Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Сформулируйте геометрическую интерпретацию игры 2х2




Виноградова Татьяна, Н-2-2

Теоретическая часть. Методы оптимальных решений

Сформулируйте геометрическую интерпретацию игры 2х2

Решение игры 2×2 допускает наглядную геометрическую интерпретацию. Пусть игра задана платежной матрицей Р = (aij), i, j = 1, 2. По оси абсцисс (рис. 3.1) отложим единичный отрезок A1 A2 точка A1(х=0) изображает стратегию A1, а все промежуточные точки этого отрезка — смешанные стратегии SA первого игрока, причем расстояние от SA до правого конца отрезка — это вероятность p1 стратегии A1, расстояние до левого конца — вероятность p2 стратегии A2. На перпендикулярных осях II и IIII откладываем выигрыши при стратегиях A1 и A2 соответственно. Если 2 -й игрок примет стратегию B1, то она дает выигрыши a11 и a21 на осях II и IIII, соответствующие стратегиям A1 и A2. Обозначим эти точки на осях I—I и II—II буквой B1. Средний выигрыш v1, соответствующий смешанной стратегии SA, определяется по формуле математического ожидания v1 = a11 p1 + a21 p2 и равен ординате точки M1, которая лежит на отрезке B1 B1 и имеет абсциссу SA (рис. 3.1).

Рис. 3.1 Рис. 3.2

 

Аналогично строим отрезок B2B2, соответствующий применению вторым игроком стратегии B2 (Рис. 3.2). При этом средний выигрыш v2 = a12 p1 + a22 p2 — ордината точки M2.
В соответствии с принципом минимакса оптимальная стратегия S*A такова, что минимальный выигрыш игрока А (при наихудшем поведении игрока В) обращается в максимум. Ординаты точек, лежащих на ломаной (рис. 3.3 в примере 3.4.1), показывают минимальный выигрыш игрока А при использовании им любой смешанной стратегии (на участке B1 N — против стратегии B1 , на участке NB2 — против стратегии B2). Оптимальную стратегию S*A = (p*1 , p*2) определяет точка N, в которой минимальный выигрыш достигает максимума; ее ордината равна цене игры v.

 

2.Как изменится оптимальное решение транспортной задачи при малом изменении потребностей или ресурсов?

Транспортная задача, в которой суммарные запасы

и суммарные потребности

совпадают, называется закрытой моделью; в противном случае - открытой. Открытая модель решается приведением к закрытой.

В случае, когда суммарные запасы превышают суммарные

потребности, т.е.

вводится фиктивный n+1 потребитель, потребности которого

В случае, когда суммарные потребности превышают суммарные

запасы, т.е.

, вводится фиктивный m+1 поставщик, запасы которого

Стоимость перевозки единицы груза как до фиктивного потребителя, так и стоимость перевозки единицы груза от фиктивного поставщика

полагают равными нулю, так как груз в обоих случаях не перевозится.

 

 





Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 574 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студенческая общага - это место, где меня научили готовить 20 блюд из макарон и 40 из доширака. А майонез - это вообще десерт. © Неизвестно
==> читать все изречения...

2336 - | 2285 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.