Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Дискретная модель для описания популяции бактерий




Бифуркация удвоения периода

 

Рассмотрим процесс роста бактерий в биореакторе (ферментёре). Если один раз за характерный период времени определять количество бактерий (х), мы получим последовательность, описывающую изменение численности бактерий:

Естественно ожидать, что численность популяции в данный момент времени зависит от того, сколько бактерий было в ферментёре в момент предыдущего замера. Математическая модель изменения численности популяции часто представляется в виде:

(14.1)

где l - коэффициент роста численности популяции; N - максимальное значение численности вида.

Из уравнения (14.1) видно, что численность популяции быстро растёт, пока она мала и начинает убывать, когда бактерий становится слишком много.

Если провести обезразмеривание модели (14.1) с помощью соотношений

тогда она примет следующий вид (штрихи опущены):

(14.2)

Уравнения типа (14.2) называются логистическими.

 





Поделиться с друзьями:


Дата добавления: 2015-09-20; Мы поможем в написании ваших работ!; просмотров: 675 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2281 - | 2079 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.