Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Теоретическая часть. Задачей дисперсионного анализа является изучение влияния одного или нескольких факторов на рассматриваемый признак




Задачей дисперсионного анализа является изучение влияния одного или нескольких факторов на рассматриваемый признак.

Однофакторный дисперсионный анализ используется в тех случаях, когда есть в распоряжении три или более независимые выборки, полученные из одной генеральной совокупности путем изменения какого-либо независимого фактора, для которого по каким-либо причинам нет количественных измерений.

Для этих выборок предполагают, что они имеют разные выборочные средние и одинаковые выборочные дисперсии. Поэтому необходимо ответить на вопрос, оказал ли этот фактор существенное влияние на разброс выборочных средних или разброс является следствием случайностей, вызванных небольшими объемами выборок. Другими словами если выборки принадлежат одной и той же генеральной совокупности, то разброс данных между выборками (между группами) должен быть не больше, чем разброс данных внутри этих выборок (внутри групп).

Пусть -й элемент -выборки , где – число выборок, – число данных в -выборке. Тогда – выборочное среднее -выборки определяется по формуле . Общее среднее вычисляется по формуле , где .

Основное тождество дисперсионного анализа имеет следующий вид:

 

,

 

где – сумма квадратов отклонений выборочных средних от общего среднего (сумма квадратов отклонений между группами);

– сумма квадратов отклонений наблюдаемых значений от выборочной средней (сумма квадратов отклонений внутри групп);

– общая сумма квадратов отклонений наблюдаемых значений от общего среднего .

Расчет этих сумм квадратов отклонений осуществляется по следующим формулам:

,

, .

 

В качестве критерия необходимо воспользоваться критерием Фишера:

 

.

 

Если расчетное значение критерия Фишера будет меньше, чем табличное значение – нет оснований считать, что независимый фактор оказывает влияние на разброс средних значений, в противном случае, независимый фактор оказывает существенное влияние на разброс средних значений ( – уровень значимости, уровень риска, обычно для экономических задач ).





Поделиться с друзьями:


Дата добавления: 2015-05-08; Мы поможем в написании ваших работ!; просмотров: 1131 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2189 - | 2073 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.