Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Понятие об основных системах счисления




 

Под системой счисления понимается способ представления любого числа с помощью некоторого алфавита символов, называемых цифрами. Все системы счисления делятся на позиционные и непозиционные.

Непозиционными называются такие системы счисления, в которых каждый символ сохраняет своё значение независимо от места его положения в числе. Примером непозиционной системы счисления является римская система, в которой символам I, V, X, L, С, D, М соответствуют числа 1, 5, 10, 50, 100, 500, 1000. Недостатком этой системы является сложность формальных правил записи чисел и выполнения арифметических действий над ними.

Система счисления называется позиционной, если значение каждого знака в числе зависит от позиции, которую занимает знак в записи числа. Это значение находится в однозначной зависимости от позиции, занимаемой цифрой, по некоторому закону. Примером позиционной системы счисления является десятичная система, используемая в повседневной жизни.

Количество различных цифр, употребляемых в позиционной системе, определяет название системы счисления и называется основанием системы счисления. Так, в десятичной системе используются десять цифр (от 0 до 9), основанием этой системы является число десять.

В позиционных системах счисления числа записываются в виде последовательности символов:

N = an an- 1 ... a 1 a 0, a -1 a -2 ... а-m ( р ),(3.1)

где N – число;

ai – цифры (символы) числа;

p – основание системы счисления;

n, m – порядковый номер разряда для целой и дробной частей числа соответственно.

Здесь и в дальнейшем основание системы счисления, в которой представлено число, будем указывать в виде нижнего индекса в скобках.

В этой последовательности запятая отделяет целую часть числа от дробной (коэффициенты при положительных степенях, включая нуль, от коэффициентов при отрицательных степенях). Значение числа, записанного в виде (3.1), может быть найдено по следующей формуле:

N = an·pn+an- 1 ·pn -1 +... +a 0 ·p 0 +a -1 ·p -1 +a -2 ·p -2 +...+а-m·p-m. (3.2)

В системе счисления с основанием р используется р цифр – символы от 0 по (р -1). Число, равное основанию, запишется 10(р).

В десятичной системе счисления мы производим вычисления по формуле (3.2), практически не задумываясь. Возьмём для примера десятичное число 123,45:

122130,4-15-2 (10) = 1·102+2·101+3·100+4·10-1+5·10-2 = 100+20+3+0,4+0,05.

Помимо десятичной, могут применяться и другие позиционные системы счисления: двоичная, восьмеричная, шестнадцатеричная.

Так, в двоичной системе счисления используются две цифры: 0 и 1. Особая значимость двоичной системы счисления в информатике определяется тем, что внутреннее представление любой информации в компьютере является двоичным кодом.

 





Поделиться с друзьями:


Дата добавления: 2015-01-29; Мы поможем в написании ваших работ!; просмотров: 1955 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если вы думаете, что на что-то способны, вы правы; если думаете, что у вас ничего не получится - вы тоже правы. © Генри Форд
==> читать все изречения...

2320 - | 2226 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.