Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Основы алгебры логики. Слово «логика» означает как совокупность правил, которым подчиняется процесс мышления, так и науку о правилах рассуждений




 

Слово «логика» означает как совокупность правил, которым подчиняется процесс мышления, так и науку о правилах рассуждений. Логика как наука о законах и формах мышления изучает абстрактное мышление как средство познания объективного мира.

Основными формами абстрактного мышления являются:

- понятия;

- суждения;

- умозаключения.

Понятие – форма мышления, в которой отражаются существенные признаки отдельного предмета или класса однородных предметов, например: «портфель»; «трапеция»; «ветер».

Суждение – мысль, в которой что-либо утверждается или отрицается о предметах. Суждения являются истинными или ложными повествовательными предложениями. Они могут быть простыми и сложными. Например: «Весна наступила»; «Грачи прилетели»; «Весна наступила, и грачи прилетели».

Умозаключение – приём мышления, посредством которого из исходного знания получается новое знание; из одного или нескольких истинных суждений, называемых посылками, мы по определённым правилам вывода получаем заключение.

Все металлы – простые вещества.

Литий – металл.

Литий – простое вещество.

Чтобы достичь истины при помощи умозаключений, надо соблюдать законы логики. Существует формальная и математическая логика.

Формальная логика – наука о законах и формах мышления.

Математическая логика изучает логические связи и отношения, лежащие в основе дедуктивного (логического) вывода.

Формальная логика связана с анализом наших обычных содержательных умозаключений, выражаемых разговорным языком. Математическая логика изучает только умозаключения со строго определёнными объектами и суждениями, для которых можно однозначно решить, истинны они или ложны.

В основе логических схем и устройств ЭВМ лежит специальный аппарат, использующий законы математической логики. Математическая логика изучает вопросы применения математических методов для решения логических задач и построения логических схем. Знание логики необходимо при разработке алгоритмов и программ, так как в большинстве языков программирования есть логические операции.

Алгебра логики – это раздел математической логики, значения всех элементов (функций и аргументов) которой определены в двухэлементном множестве: «Истина» («True») и «Ложь» («False»), или 1 и 0.

В математической логике суждения называются высказываниями. Алгебру логики иначе называют алгеброй высказываний.

Высказывание – это повествовательное предложение, о котором можно сказать, истинно оно или ложно.

Примеры высказываний Может быть истинным или ложным

Сейчас идёт снег.

Земля – планета Солнечной системы. истинно

2 + 8 < 5 ложно

5 ´ 5 = 25 истинно

Всякий квадрат есть параллелограмм. истинно

Всякий параллелограмм есть квадрат. ложно

2 ´ 2 = 5 ложно

А вот примеры, не являющиеся высказываниями: «Уходя, гасите свет!»; «Да здравствует мыло душистое и полотенце пушистое!»

Высказывания, приведённые выше, являются простыми. Сложные высказывания получаются путём объединения простых высказываний связками-союзами И, ИЛИ и частицей НЕ. Значение истинности сложных высказываний зависит от истинности входящих в них простых высказываний и от объединяющих их связок.

 





Поделиться с друзьями:


Дата добавления: 2015-01-29; Мы поможем в написании ваших работ!; просмотров: 2405 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2227 - | 2095 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.