Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Методы вычисления коэффициентов взаимосвязи




Величина коэффициента взаимосвязи рассчитывается с учетом шкалы, использованной для измерений.

Для оценки взаимосвязи, когда измерения производят в шкале отношений или интервалов и форма взаимосвязи линейная, используется коэффициент корреляции Бравэ-Пирсона (коэффициенты корреляции для других шкал измерения в данном пособии не рассматриваются). Обозначается он латинской буквой – r. Вычисление значения r чаще всего производят по формуле:

, (3.1)

где и – средние арифметические значения показателей x и y, и – средние квадратические отклонения, n – число измерений (испытуемых).

В некоторых случаях тесноту взаимосвязи определяют на основании коэффициента детерминации D, который вычисляется по формуле:

. (3.2)

Этот коэффициент определяет часть общей вариации одного показателя, которая объясняется вариацией другого показателя. Так, для вычисленного значения r = –0,677 коэффициент детерминации определится так:

.

Следовательно, только на 45,8 % распределение спортивного результата в тройном прыжке объясняется результатам в беге на 30 м. Остальная часть (100% – 45,8% = 54,2%) вариации объясняется влиянием других неучтенных факторов.

 

Рис. 3.7. Зависимость между результатами в беге на 30 м с ходу
и тройном прыжке с места (n = 10).

 

 

3. Основы теории проверки
статистических гипотез

В физическом воспитании и спорте часто приходится делать вывод об общих закономерностях проявления какого-либо показателя: нормально или нет распределены результаты измерений этого показателя в генеральной совокупности, отличается ли среднее арифметическое значение результатов измерения в генеральной совокупности до тренировок от аналогичного параметра после тренировок (эффективна или нет методика тренировок), отличается ли дисперсия генеральной совокупности результатов измерения показателя до тренировок от такого же показателя после тренировок (изменилась или нет стабильность результатов спортсмена) и т.д.

Так как указанные выводы делаются на основании относительно небольшого числа результатов измерения показателя (n = 30), необходима проверка достоверности (бесспорности) таких выводов.

Для этого применяются статистические гипотезы.

Статистической гипотезой называется проверяемое математическими методами предположение относительно статистических характеристик результатов измерений. Статистическую гипотезу обозначают символом H.

Обычно выдвигают и проверяют две противоречащие друг другу гипотезы:

1) нулевую (основную) H0;

2) конкурирующую (альтернативную) H1.

Примеры статистических гипотез:

1. Нулевая гипотеза H0: закон распределения результатов измерения является нормальным. Конкурирующая гипотеза H1: закон распределения результатов измерения отличен от нормального.

2. Нулевая гипотеза H0: среднее арифметическое значение генеральной совокупности результатов измерения показателя после цикла тренировок не изменилось. Конкурирующая гипотеза H1: среднее арифметическое значение увеличилось.

 





Поделиться с друзьями:


Дата добавления: 2015-05-08; Мы поможем в написании ваших работ!; просмотров: 729 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2229 - | 2061 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.