постоянными коэффициентами.
Решение дифференциального уравнения вида или, короче, будем искать в виде , где k = const.
Т.к. то
При этом многочлен называется характеристическим многочленом дифференциального уравнения.
Для того, чтобы функция являлась решением исходного дифференциального уравнения, необходимо и достаточно, чтобы
т.е.
Т.к. ekx ¹ 0, то - это уравнение называется характеристическим уравнением.
Как и любое алгебраическое уравнение степени n, характеристическое уравнение имеет n корней. Каждому корню характеристического уравнения ki соответствует решение дифференциального уравнения.
В зависимости от коэффициентов k характеристическое уравнение может иметь либо n различных действительных корней, либо среди действительных корней могут быть кратные корни, могут быть комплексно – сопряженные корни, как различные, так и кратные.
Не будем подробно рассматривать каждый случай, а сформулируем общее правило нахождения решения линейного однородного дифференциального уравнения с постоянными коэффициентами.
1) Составляем характеристическое уравнение и находим его корни.
2) Находим частные решения дифференциального уравнения, причем:
a) каждому действительному корню соответствует решение ekx;
б) каждому действительному корню кратности m ставится в соответствие m решений:
в) каждой паре комплексно – сопряженных корней характеристического уравнение ставится в соответствие два решения:
и .
г) каждой паре m – кратных комплексно – сопряженных корней характеристического уравнения ставится в соответствие 2 m решений:
3) Составляем линейную комбинацию найденных решений.
Эта линейная комбинация и будет являться общим решением исходного линейного однородного дифференциального уравнения с постоянными коэффициентами.