Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Реферат Уравнения с параметрами




Введение

Глава 1.

§1. Теоретические основы решения уравнений с параметрами.

§2. Основные виды уравнений с параметрами.

Глава 2.

§1. Разработка факультативных занятий по теме.

Заключение.

ВВЕДЕНИЕ

Главной целью факультативных занятий по математике являются расширение и углубление знаний, развитие интереса учащихся к предмету, развитие их математических способностей. Процесс обучения строится как совместная исследовательская деятельность учащихся.

Большую роль в развитии математического мышления учащихся на факультативных занятиях играет изучение темы "Уравнения с параметрами". Вместе с тем изучение этой темы в школьной программе не уделено достаточного внимания. Интерес к теме объясняется тем, что уравнения с параметрами предлагаются как на школьных выпускных экзаменах, так и на вступительных экзаменах в вузы.

Целью курсовой работы является ознакомление учащихся с теоретическими основами решения уравнений с параметрами, основными их видами и рекомендациями к решению.

ГЛАВА 1

§1. Теоретические основы решения уравнений с параметрами.

 

§1. Теоретические основы решения уравнений с параметрами.

Рассмотрим уравнение

F (х, у,..., z; α,β,..., γ) = 0 (F)

с неизвестными х, у,..., z и с параметрами α,β,..., γ;при всякой допустимой системе значений параметров α00,..., γ0 уравнение (F) обращается в уравнение

F(х, у,..., z; α00,..., γ0) = 0(F0)

с неизвестными х, у,..., z, не содержащее параметров. Уравнение (Fo) имеет некоторое вполне определенное множество (быть, может, пустое) решений.

Аналогично рассматриваются системы уравнений, содержащих параметры. Допустимыми системами значений параметров считаются системы, допустимые для каждого уравнения в отдельности.

Определение. Решить уравнение (или систему), содержащее параметры, это значит, для каждой допустимой системы значений параметров найти множество всех решений данного уравнения (системы).

Понятие эквивалентности применительно к уравнению, содержащим параметры, устанавливается следующим образом.

Определение. Два уравнения (системы)

F(х, у,..., z; α,β,..., γ) = 0 (F),

Ф (х, у,..., z; α,β,..., γ) = 0 (Ф)

с неизвестным х, у,..., z и с параметрами α,β,..., γ называются эквивалентными, если для обоих уравнений (систем) множество допустимых систем значений параметров одно и то же и при всякой допустимой системе значений, параметров оба уравнения (системы уравнений) эквивалентны.

Итак, эквивалентные уравнения при всякой допустимой системе значений параметров имеют одно и то же множество решений.

Преобразование уравнения, изменяющее множество допустимых систем значений параметров, приводит к уравнению, не эквивалентному данному уравнению.

Предположим, что каждое из неизвестных, содержащихся в уравнении

F(x, у,,z; α,β,..., γ) =0 (F)

задано в виде некоторой функции от параметров: х = х(α,β,..., γ);

у = у(α,β,..., γ);….

z= z (α,β,..., γ). (Х)

Говорят, что система функций (Х), заданных совместно, удовлетворяет уравнению (F), если при подстановке этих функций вместо неизвестных х, у,..., z в уравнение (F) левая его часть обращается в нуль тождественно при всех допустимых значениях параметров:

F (x (α,β,..., γ), y ( α,β,..., γ),…, z (α,β,..., γ) ≡0.

При всякой допустимой системе численных значений параметров α = α0,β=β0,..., γ= γ0 соответствующие значения функций (Х) образуют решение уравнения

F(х, у,..., z; α00,..., γ0) = 0

§2. Основные виды уравнений с параметрами.

Линейные и квадратные уравнения.

Линейное уравнение, записанное в общем виде, можно рассматривать как уравнение с параметрами: ах = b, где х – неизвестное, а, b – параметры. Для этого уравнения особым или контрольным значением параметра является то, при котором обращается в нуль коэффициент при неизвестном.

При решении линейного уравнения с параметром рассматриваются случаи, когда параметр равен своему особому значению и отличен от него.

Особым значением параметра а является значение а = 0.

1. Если а ≠ 0, то при любой паре параметров а и b оно имеет единственное решение х = .

2. Если а = 0, то уравнение принимает вид: 0 х = b. В этом случае значение b = 0 является особым значением параметра b.

2.1. При b ≠ 0 уравнение решений не имеет.

2.2. При b = 0 уравнение примет вид: 0 х = 0. Решением данного уравнения является любое действительное число.

П р и м е р. Решим уравнение

2а(а — 2) х=а — 2. (2)

Р е ш е н и е. Здесь контрольными будут те значения параметра, при которых коэффициент при х обращается в 0. Такими значениями являются а=0 и а=2. При этих значениях а невозможно деление обеих частей уравнения на коэффициент при х. В то же время при значениях параметра а≠0, а≠2 это деление возможно. Таким образом, целесообразно множество всех действительных значений параметра разбить на подмножества

A1 ={0}, А2 ={2} и Аз= { а ≠0, а ≠2}

и решить уравнение (2) на каждом из этих подмножеств, т. е. решить уравнение (2) как семейство уравнений, получающихся из него при следующих значениях параметра:

1) а= 0; 2) а= 2; 3) а≠0, а≠2

Рассмотрим эти случаи.

1) При а= 0уравнение (2) принимает вид 0 х = — 2. Это уравнение не имеет корней.

2) При а= 2уравнение (2) принимает вид 0 х =0. Корнем этого уравнения является любое действительное число.

3) При а≠0, а≠2 из уравнения (2) получаем, х=

откуда х= .

0 т в е т: 1) если а= 0, то корней нет; 2) если а= 2, то х — любое действительное число; 3) если а ≠0, а ≠2, то х =

П р и ме р. Решим уравнение

(а — 1) х 2 +2 (2 а +1) х +(4 а +3) =0; (3)

Р е ш е н и е. В данном случае контрольным является значение a =1. Дело в том, что при a =1 уравнение (3) является линейным, а при а≠ 1 оно квадратное (в этом и состоит качественное изменение уравнения). Значит, целесообразно рассмотреть уравнение (3) как семейство уравнений, получающихся из него при следующих значениях параметра: 1) а =l; 2) а ≠1.

Рассмотрим эти случаи.

1) При a =1 уравнение (3) примет вид б х +7=0. Из этого

уравнения находим х= - .

2) Из множества значений параметра а≠ 1 выделим те значения, при которых дискриминант уравнения (3) обращается в 0.

Дело в том, что если дискриминант D=0 при а=ао, то при переходе значения D через точку ао дискриминант может изменить знак (например, при а<ао D< 0, а при а>ао D>0). Вместе с этим при переходе через точку ао меняется и число действительных корней квадратного уравнения (в нашем примере при а<ао корней нет, так как D< 0, а при а>ао D>0 уравнение имеет два корня). Значит, можно говорить о качественном изменении уравнения. Поэтому значения параметра, при которых обращается в 0 дискриминант квадратного уравнения, также относят к контрольным значениям.

Составим дискриминант уравнения (3):

=(2а+ l)2 — (а — 1) (4а+3). После упрощений получаем = 5а+4.

Из уравнения =0 находим а= второе контрольное значение параметра а. При

этом если а < , то D <0; если a,, то D≥0.

a ≠ 1

Таким образом, осталось решить уравнение (3) в случае, когда а < и в случае, когда { a, a ≠ 1 }.

Если а < , то уравнение (3) не имеет действительных корней; если же

{ a, a ≠ 1 }, то находим

Ответ: 1) если а < , то корней нет; 2) если а = 1, то х = - ;

3) a, то

a ≠ 1

Дробно-рациональные уравнения с параметрами, сводящиеся к линейным.

Процесс решения дробных уравнений протекает по обычной схеме: дробное уравнение заменяется целым путем умножения обеих частей уравнения на общий знаменатель левой и правой его частей. После чего учащиеся решают известным им способом целое уравнение, исключая посторонние корни, т. е. числа, которые обращают общий знаменатель в нуль. В случае уравнений с параметрами эта задача более сложная. Здесь, чтобы исключить посторонние корни, требуется находить значение параметра, обращающее общий знаменатель в нуль, т. е. решать соответствующие уравнения относительно параметра.

П р и м ер. Решим уравнение

(4)

Р е ш е н и е. Значение а=0 является контрольным. При a =0 уравнение (4) теряет смысл и, следовательно, не имеет корней. Если а≠0, то после преобразований уравнение (4) примет вид:

х 2 +2 (1 — а) х + а 2 — 2 а — 3 = 0. (5)

Найдем дискриминант уравнения (5)

= (1 — a)2 — (a 2 — 2 а — 3) = 4.

Находим корни уравнения (5):

х 1 = а + 1, х 2 = а3.

При переходе от уравнения (4) к уравнению (5) расширилась

область определения уравнения (4), что могло привести к появлению посторонних корней. Поэтому необходима проверка.

П р о в е р к а. Исключим из найденных значений х такие, при которых х 1 +1=0, х 1 +2=0, х 2 +1=0, х 2+2=0.

Если х 1 +1=0, т. е. (а +1)+1=0, то а= — 2. Таким образом, при а= — 2 х 1 — посторонний корень уравнения (4).

Если х 1 +2=0, т. е. (а +1)+2=0, то а= — 3. Таким образом, при а= — 3 x 1 — посторонний корень уравнения (4).

Если х 2 +1 =0, т. е. (а — 3)+1=0, то а= 2. Таким образом, при а= 2 х 2 — посторонний корень уравнения (4)'.

Если х 2 +2=0, т. е. (а — 3)+2=0, то а =1. Таким образом, при а= 1 х 2 — посторонний корень уравнения (4).

Для облегчения выписывания ответа сведем полученные результаты на рисунке.

только х 2 только х 2 корней нет только х 1только х 1

х 1,2 х 1,2 х 1,2 х 1,2 х 1,2 х 1,2

 

А

В соответствии с этой иллюстрацией при а= — 3 получаем х = — 3 — 3= — 6;

при a = — 2 х = — 2 — 3= — 5; при a =1 х = 1+1=2; при a=2 х =2+1=3.

Итак, можно записать

От в ет: 1) если a = — 3, то х = — 6; 2) если a = — 2, то х = — 5; 3) если a =0, то корней нет; 4) если a = l, то х =2; 5) если а=2, то х =3;

6) если а ≠ -3;

а ≠ -2;

а ≠ 0; то х 1 = а + 1,

а ≠ 1; х 2 = а – 3.

а ≠ 2,

Иррациональные уравнения с параметрами.

Существует несколько способов решения иррациональных уравнений с параметрами. Познакомимся с ними, разобрав следующий пример.

П р и м ер. Решить уравнение х - = 1. (6)

Решение:

Возведем в квадрат обе части иррационального уравнения с последующей проверкой полученных решений.

Перепишем исходное уравнение в виде:

= х – 1 (7)

При возведении в квадрат обеих частей исходного уравнения и проведения тождественных преобразований получим:

2 х 2 – 2 х + (1 - а) = 0, D = 2 а – 1.

Особое значение: а = 0,5. Отсюда:

1) при а > 0,5 х 1,2 = 0,5 (1 ± );

2) при а = 0,5 х = 0,5;

3) при а <0,5 уравнение не имеет решений.

Проверка:

1) при подстановке х = 0,5 в уравнение (7), равносильное исходному, получим неверное равенство. Значит, х = 0,5 не является решением (7) и уравнения (6).

2) при подстановке х1 = 0,5 (1 ± ) в (7) получим:

-0,5 (1 + ) = – (0,5 (1 - ))2

Так как левая часть равенства отрицательна, то х1 не удовлетворяет исходному уравнению.

3) Подставим х 2 в уравнение (7):

=

Проведя равносильные преобразования, получим:

Если , то можно возвести полученное равенство в квадрат:

Имеем истинное равенство при условии, что

Это условие выполняется, если а ≥1. Так как равенство истинно при а ≥1, а х2 может быть корнем уравнения (6) при а > 0,5, следовательно, х2 – корень уравнения при а ≥1.

 

Место и цели задач с параметрами в школьном курсе математики

Всё возрастающая популярность задач с параметрами далеко не случайна. Теоретическое изучение и математическое моделирование многообразных процессов из различных областей науки и практической деятельности человека часто приводят к достаточно сложным уравнениям и неравенствам или их системам содержащим параметры. Задачи с параметрами, предлагающиеся на конкурсных экзаменах, являются прообразом важных научно-исследовательских задач, которые предстоит решать будущему поколению. Такие задачи требуют глубокого понимания сути процесса, свободного владения различными математическими методами и скрупулёзного анализа.

Все рассмотренные задания в данной работе имеют цель – помочь учащимся составить представление о параметре, о том, что значит решить уравнение с ним. В самом начале знакомства с параметрами у учеников возникает психологический барьер, который обусловлен его противоречивыми характеристиками. С одной стороны, параметр в уравнении следует считать величиной известной, а с другой, конкретное значение параметра не дано. С одной стороны, параметр является величиной постоянной, а с другой может принимать различные значения. Получается, что параметр в уравнении – это «неизвестная величина», «переменная постоянная». Эти противоречивые высказывания точно отражают суть тех сложностей, которые нужно преодолеть ученикам.

В последнее время в материалах ЕГЭ и ГИА, предлагаются задания по теме:,,Уравнения, содержащие параметр”. Некоторые учащиеся боятся даже браться за эти задачи, думая, что у них все равно не получиться. Стоит отметить, что навыки в решении уравнений и неравенств с параметром необходимы ученикам, желающим подготовиться для успешной сдачи централизованного тестирования и ЕГЭ, а также будет хорошим подспорьем для успешных выступлений на математических олимпиадах. Задачи такого типа вызывают затруднения у учащихся, так как практических заданий по данной теме в школьных учебниках мало.

Задачи с параметрами – эффективное упражнение для развития интеллекта, математического и логического мышления, умения анализировать, сравнивать, обобщать, способствуют формированию математической культуры. Каждое из заданий с параметрами представляет для учащихся небольшую исследовательскую работу, справившись с которой, ученик поднимается на одну ступеньку выше в своем понимании методов решения математических задач. Учащиеся, владеющие методами решения задач с параметрами, успешно справляются с другими задачами.

При решении задач с параметрами приходится все время производить несложные, но последовательные рассуждения, составлять для себя логическую схему решаемой задачи. Поэтому такие задачи – незаменимое средство для тренировки логического мышления. Их решение позволяет намного лучше понять обычные, без параметров, задачи. А привычка к математическим рассуждениям очень полезна при изучении высшей математики и использовании полученных знаний впоследствии.





Поделиться с друзьями:


Дата добавления: 2015-05-07; Мы поможем в написании ваших работ!; просмотров: 691 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2217 - | 2173 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.