3. Розв'язати нерівності:
а) f'(x) > 0, указати проміжки зростання функції у = f(x);
б) f'(x) < 0, указати проміжки спадання функції у = f(x)·
Приклад. Знайдіть проміжки монотонності функції у = х3 - 3х2.
Розв'язання
1. Область визначення функції: D(y) = R.
2. Знаходимо похідну у' = 3х2 -6х.
3. Розв'язуємо нерівності: а) у' > 0; б) у' < 0. Розв'язуємо ці нерівності методом інтервалів, для цього знаходимо нулі похідної: 3 х2 - 6х = 0, 3х(х - 2) = 0, х = 0 або х = 2. Наносимо на координатну пряму (рис. 37) нулі похідної і визначаємо знаки похідної на кожному проміжку:
y'(-1) = 3 · (-1)2 - 6 · (-1) = 3 + 6 = 9 > 0;
y'(1) = 3 · І2 – 6 - 1 = -3 < 0;
у'(3) = 3 · 32 – 6 · 3 = 27 - 18 = 9 > 0.
а) у' > 0 в кожному із проміжків (- ; 0); (2; + ), отже, функція на цих проміжках зростає.
б) у' < 0 на проміжку (0; 2), отже, функція на цьому проміжку спадає.
Відповідь: функція зростає на кожному із проміжків (- ;0); (2;+ ); спадає на проміжку (0; 2).
Означення. Точка а із області визначення функції f(x) називається точкою максимуму цієї функції, якщо існує такий окіл точки а, що для всіх х а із цього околу виконується нерівність f(x) < f(a). (Рис. 39).
Означення. Точка b із області визначення функції f(x) називається точкою мінімуму цієї функції, якщо існує такий окіл точки b, що для всіх х b із цього околу виконується нерівність f(x) < f(b). (Рис. 40).