1. y - yо = f '(xo)(x – xo) — рівняння шуканої дотичної.
2. уo= 1 2 – 4·1 = 1 – 4 = - 3.
3. .
4. Підставляємо значення xo = 1, yo = –3, f'(xo) = –2 у рівняння дотичної: y + 3 = –2(x – 1), або у = – 3 – 2 x + 2, або y = –1 – 2 х (рис. 28).
Таблиця 4 Таблиця похідних
(еx)’ = еx
Похідна складеної функції у == f(g(x)) знаходиться за формулою
де u = g(x),
або похідна складеної функції дорівнює похідній зовнішній функції по проміжній змінній, помноженій на похідну внутрішньої функції по основному аргументу.
функція y = f(x) називається зростаючою на деякому проміжку, якщо для будь-яких х1 і х2, що належать проміжку, із умови х2 > х1 випливає, що f(x2) > f(x1).
Дотична в кожній точці графіка зростаючої функції, як видно з рис. 32, утворює з додатним напрямом осі ОХ або гострий кут, або кут, що дорівнює нулю (в останньому випадку дотична паралельна осі ОХ).
Виходячи із геометричного змісту похідної: tg α = f’(xo), це означає, що похідна в кожній точці проміжку невід’ємна, тому для зростаючої функції f(x) виконується умова: .
Функція y = f(x) називається спадною на проміжку, якщо для будь-яких х1 і х2, що належать цьому проміжку, із умови х2 > х1 випливає, що f(x2) < f(x1). Дотична в кожній точці графіка спадної функції (рис. 33) утворює з віссю ОХ або тупий кут, або кут, що дорівнює нулю, тому для функції f(x), яка спадає на деякому проміжку, виконується умова f'(x) < О.
На рис. 34 видно також, що одна і та ж функція може на одному проміжку області її визначення зростати, а на іншому — спадати. Характер поведінки функції на кожному із цих проміжків визначається знаком її похідної.
Отже, наочне уявлення дозволяє сформулювати властивості зростаючих та спадних функцій.
Якщо функція у = f(x) диференційована і зростає на деякому проміжку, то її похідна на цьому проміжку не від'ємна.
Якщо функція у = f(x) диференційована і спадає на деякому проміжку, то її похідна на цьому проміжку не додатна.
Проте для розв'язування задач особливо важливими є обернені твердження, які виражають ознаки зростання і спадання функції на проміжку. Нехай значення похідної функції у = f(x) додатні на деякому проміжку, тобто f'(x) > 0. Оскільки f'(x) = tg α, то із умови tg α > 0 випливає, що дотичні, проведені до графіка функції в будь-якій точці цього інтервалу, утворюють гострі кути з додатним напрямом осі ОХ. У цьому випадку графік функції «піднімається» на заданому проміжку, тобто функція зростає (рис. 35).
Якщо f'(x) < 0 на деякому проміжку, то кутовий коефіцієнт дотичної tg α = f(x) до графіка функції у = f(x) від'ємний. Це означає, що дотична до графіка функції утворює з віссю ОХ тупий кут і графік функції на цьому проміжку «опускається», тобто функція f(x) спадає (рис. 36).
Якщо f'(x) > 0 на проміжку, то функція f(x) зростає на цьому проміжку.
Якщо f(x) < 0 на проміжку, то функція f(x) спадає на цьому проміжку.
Ці два твердження називаються ознаками зростання (спадання) функції на проміжку.
Строге доведення цих тверджень виходить за рамки шкільного курсу математики.
Проміжки зростання і спадання функції часто називають проміжками монотонності цієї функції.
Знаходження проміжків зростання та спадання функції можна виконувати за таким планом:
1. Знайти область визначення заданої функції у = f(x).