Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


п. 4.6. Схема исследования функции и построение графика функции




Схема исследования:

1. Найти область определения функции (ООФ – значения переменной х, при которых функция существует).

2. Исследовать функцию на четность – нечетность:

Если f(-x)=f(x), то функция четная (график симметричен относительно оси О y).

Если f(-x)=-f(x), то функция нечетная (график симметричен относительно начала координат).

3. Найти вертикальные асимптоты.

!!! Вертикальные асимптоты х=х0 следует искать в точках разрыва функции y=f(x) или на концах ее области определения (a,b), если a и b - конечные числа.

Пусть функция y=f(x) определена в некоторой окрестности точки х0 (исключая, возможно, саму эту точку) и хотя бы один из пределов функции при х®х0-0 (слева) или х®х0+0 (справа) – равен бесконечности, т.е. lim f(x)= или lim f(x)= . Тогда прямая х=х0 является вертикальной

х®х0-0 х®х0+0

асимптотой графика функции y=f(x).

4.Найти горизонтальные асимптоты (исследовать поведение функции в бесконечности).

Пусть функция y=f(x) определена при достаточно больших х и существует конечный предел функции lim f(x)=b. Тогда прямая y=b есть

x

горизонтальная асимптота графика функции y=f(x).

 

Замечание. Если конечен только один из пределов lim f(x)=bл или

x

lim f(x)=bп, то функция имеет левостороннюю y=b л или правостороннюю

x

y=bп горизонтальную асимптоту.

 

 

5. Найти наклонную асимптоту.

Пусть функция y=f(x) определена при достаточно больших х и существуют конечные пределы функции lim и lim[f(x)-kx]=b.

x x

Тогда прямая y=kx+b является наклонной асимптотой графика функции y=f(x).

!!! Наклонная асимптота, так же, как и горизонтальная, может быть правосторонней или левосторонней.

6.Найти экстремумы (максимум, минимум) и интервалы монотонности (возрастание, убывание) функции.

- найти производную функции (разложить ее на множители) и приравнять ее к 0, т.е. ;

- найти корни этого уравнения и точки, в которых производная не существует (критические точки);

- исследовать знак производной слева и справа от каждой критической точки и сделать вывод о наличии экстремумов функции (найти ординаты точек экстремума!);

- на промежутке, где - функция возрастает; на промежутке, где - функция убывает.

7.Найти точки перегиба и промежутки выпуклости и вогнутости функции

- найти вторую производную функции (разложить ее на множители) и приравнять ее к 0, т.е. ;

- найти корни этого уравнения;

- исследовать знак второй производной слева и справа от каждой точки и сделать вывод о наличии точек перегиба функции (найти ординаты точек перегиба!);

- на промежутке, где - функция будет вогнутой; на промежутке, где - функция будет являться выпуклой вверх.

8.Найти точки пересечения с осями координат и, возможно, некоторые дополнительные точки, уточняющие график.

!!! Уравнение оси Ох: y=0.

Уравнение оси Oy: х=0.

9. Используя результаты исследования, построить график функции.

 

 

Необходимые формулы для решения задач о касательной

 

1. Общее уравнение прямой:

Ax+By+C=0

2. Уравнение прямой с угловым коэффициентом:

y=kx+b

(k=tgj коэффициент прямой равен тангенсу угла наклона этой прямой)

Если две прямые y=k1x+b1 и y=k2+b2 параллельны, то k1=k2.

Если две прямые y=k1x+b1 и y=k2+b2 перпендикулярны, то k1*k2=-1.

3. Уравнение прямой, проходящей через данную точку в данном направлении(известен коэффициент k):

Пусть прямая проходит через точку M1(x1;y1) и образует с осью Ox угол

y-y1=k(x-x1)

4. Уравнение прямой, проходящей через две данные точки M1(x1;y1) и M2(x2;y2):

5. Уравнение касательной к кривой y=f(x) в точке x0 имеет вид

y-f(x0)=f¢(x0)(x-x0)

6. Геометрический смысл производной:

f¢(x0)=k=tga

(производная f¢(x0) есть угловой коэффициент(тангенс угла наклона) касательной, проведенной к кривой y=f(x) в точке x0)

 





Поделиться с друзьями:


Дата добавления: 2015-05-07; Мы поможем в написании ваших работ!; просмотров: 722 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наглость – это ругаться с преподавателем по поводу четверки, хотя перед экзаменом уверен, что не знаешь даже на два. © Неизвестно
==> читать все изречения...

2644 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.