Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Разложения потенциалов статических электромагнитных полей в ряд по мультиполям. Условия применимости




Введение мультипольного момента основано на довольно простых соображениях, к-рые удобно проиллюстрировать на примере статич. электрич. полей, создаваемых системой точечных зарядов ei. B системе координат с центром, расположенным где-нибудь внутри системы зарядов, положения зарядов характеризуются радиус-векторами r i(i - номер заряда). Потенциал этой системы зарядов в точке R определяется суммой потенциалов всех частиц:

Если интересующая нас точка R значительно удалена от системы зарядов, т. е. | r i |/| R | << 1, то потенциал можно разложить в Тейлора ряд по степеням этого отношения:

где a j = 1, 2, 3 - нумеруют компоненты соответствующих векторов; по повторяющимся a j производится суммирование. Такое разложение потенциала наз. разложением по M. или мультипольным разложением. В нулевом приближении

т. е. f(0) совпадает с потенциалом точечного заряда q, равного суммарному заряду системы. Величина - мультипольный момент нулевого порядка - полностью определяет в этом приближении потенциал поля на больших расстояниях. Следующий член разложения

Здесь n - единичный вектор, направленный вдоль R. Величина , определяющая (если q = 0) потенциал в 1-м порядке, наз. динольным моментом системы зарядов или мультипольным моментом 1-го порядка. T. о., характеризуя потенциал (или поле) в 1-м порядке, можно заменить систему зарядов точечным зарядом q и диполем с дипольным моментом d. След. член разложения f(2) после нек-рых преобразований записывается в виде

где (или Q ab = D ab/6) наз. квадрупольным моментом системы зарядов (dab - Кро-некера символ).

Общий член разложения потенциала определяется неприводимым тензором l -го ранга

к-рый наз. 2 l -польным моментом системы зарядов, l - порядок M. Тензор 2 l -польного момента симметричен по всем индексам и обращается в нуль при сво-рачивании по любой паре индексов. Общий член разложения потенциала имеет более компактную форму при разложении j(R) по сферическим функциям:

где Ylm, Y*lm - сферич. ф-ции, q, f и q i, j i - полярный и азимутальный углы, образуемые векторами R и r i с осями координат. Приведённая форма разложения отличается от исходного ряда Тейлора только перегруппировкой слагаемых и введением сферич. ф-ций, поэтому совокупность 2 l + 1 независимых величин Q(l)m также наз. 2 l -польным моментом. Если все предыдущие моменты равны нулю, 2 l -польный момент не зависит от выбора начала системы координат.

Полученные соотношения позволяют дать более общее определение M. порядка l как системы зарядов, для к-рой мультипольный момент порядка l отличен от нуля, а все остальные мультипольные моменты равны нулю. Потенциал статич. поля M. порядка l убывает на бесконечности как R -(l +1). Такой характер спадания математически объясняется тем, что потенциал раскладывается в ряд по обратным степеням R, а физически связан с интерференцией полей от отд. зарядов, входящих в M. Кроме этого, M. обладает специфич. угл. зависимостью, определяемой l -й сферич. ф-цией. Характер убывания поля вдали от сложной системы зарядов позволяет заменить её совокупность M. соответствующего порядка (с соответствующими значениями мультиполь-ных моментов).

Вполне аналогично мультипольное разложение можно ввести для статич. магн. полей, создаваемых системой стационарных токов. Для этого необходимо провести разложение векторного потенциала магн. поля:

u i - скорость движения i -го заряда. В отличие от случая статич. электрич. полей, разложение потенциала статич. магн. поля начинается с дипольного вклада, т. к. магн. зарядов нет (магнитные монополи пока не обнаружены). Для первого члена разложения получим

где - магнитный момент системы.

След. члены разложения получаются аналогично. Общий член разложения векторного потенциала выражается через шаровые ф-ции.

Для непрерывных ограниченных распределений зарядов (источников и стоков) в приведённых выше ф-лах заменяется объёмным интегралом от соответствующей плотности заряда (тока).

Разложение по M. широко используется не только в задачах электро- и магнитостатики, но и в др. областях физики, напр. в акустике и общей теории относительности.

Инвариантность фазы электромагнитной волны. Законы преобразования частоты и волнового вектора электромагнитной волны. Эффект аберрации в астрономии.

Аберра́ция све́та (лат. aberratio, от ab от и errare блуждать, уклоняться) — изменение направления распространения света (излучения) при переходе из одной системы отсчёта к другой [1].

При астрономических наблюдениях аберрация света приводит к изменению положения звёзд на небесной сфере вследствие изменения направления скорости движения Земли. Различают годичную, суточную и вековую аберрации. Годичная аберрация связана с движением Земли вокруг Солнца. Суточная — обусловлена вращением Земли вокруг своей оси. Вековая аберрация учитывает эффект движения солнечной системы вокруг центра Галактики [2].

Явление аберрации света приводит также к неизотропности излучения движущегося источника. Если в системе покоя источника его излучение изотропно, то в системе отсчёта относительно которой он движется, это излучение будет неизотропным, с повышением интенсивности в направлении движения источника [1]





Поделиться с друзьями:


Дата добавления: 2015-05-07; Мы поможем в написании ваших работ!; просмотров: 1159 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2311 - | 2095 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.