Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Операции над отношениями




Так как бинарные отношения являются множествами, то к ним применимы все понятия, которые вводятся для множеств: понятие равенства, включения, а также операции пересечения, объединения и дополнения. В этом разделе мы будем считать, что все отношения заданы на одном и том же множестве X.

Пусть a и b - два бинарных отношения на множестве X. Каждому из них соответствует некоторое множество пар (подмножества и ).

Определение 2.1. Пересечением отношений a и b, заданных на множестве X, называется отношение такое, что:

Пример 2.1. Пересечением отношений "не меньше" и "не равно", определенных на множестве действительных чисел R, является отношение "строго больше":

.

Определение 2.2. Объединением отношений a и b, заданных на множестве X, называется отношение, такое, что:

является отношение "быть ребенком".

Определение 2.3. Разностью отношений a и b, заданных на множестве X, называется отношение a\b, такое, что:

Пример 2.3. Разностью отношений "не меньше" и "не больше" на R является отношение "больше":

.

Пример 2.4. Разностью отношений "быть ребенком" и "быть дочерью", определенных на множестве всех людей, является отношение "быть сыном".

Определение 2.4. Дополнением отношения a, определенного на множестве X, называется отношение, определяемое подмножеством пар из X x X, не входящих в:

x y .

Пример 2.5. Дополнением отношения "не меньше" на R является отношение "не меньше":

.

Отметим, что приведенные выше определения являются просто перефразировками соответствующих определений для обычных множеств и все свойства теоретико-множественных операций пересечения, объединения и дополнения, имеющие место для произвольных множеств, выполняются и для отношений.

Кроме теоретико-множественных операций для отношений вводятся некоторые дополнительные операции, которые связаны с их специфической структурой. Мы рассмотрим две такие операции.

Определение 2.5. Если в каждой упорядоченной паре, принадлежащей отношению a, поменять местами первую и вторую компоненты, то получим новое отношение, которое называется обратным для отношения a и обозначается через a-1:

.

Пример 2.6. Обратным для отношения "не меньше" на множестве действительных чисел R является отношение "меньше":

.

Пример 2.7. Обратным для отношения "быть родителем" на множестве людей является отношение "быть ребенком".

Граф отношения a-1 получается из графа отношения переориентацией всех дуг (рис. 4).

(а) Отношение a (б) Отношение a-1

Рис. 4. Графы отношений a и a-1

Если отношение задано с помощью булевой матрицы, то, поменяв в ней местами строки и столбцы, получим булеву матрицу отношения a-1 (рис 5).

(а) Матрица отношения a (б) Матрица отношения a-1

Рис. 5. Матрицы отношений a и a-1

Определение 2.6. Произведением или композицией отношений a и b, заданных на множестве X, называется отношение a°b, состоящее из таких кортежей (x, z), для которых существует элемент , удовлетворяющий условию и :

.

Пример 2.8. Произведением отношений "быть братом" и "быть отцом" является отношение "быть братом одного из родителей", т. е. "быть дядей".

Если отношения a и b на некотором множестве X заданы с помощью графов, то принадлежность пары (x, z) к отношению a °b означает, что из вершины x в вершину z можно попасть точно за два шага, причем первый из них делается по дуге отношения a, а второй - по дуге отношения b.

На рисунке 6 изображены графы, представляющие отношения a (точечные дуги) и b (пунктирные дуги), и графы, представляющие произведения отношений a°b и b°a.

(а) Графы отношений a и b (б) Граф отношения a°b

(в) Граф отношения a°b

Рис. 6. Пример произведения отношений (a°b b°a)

Пример, приведенный на рисунке 6, показывает, что для произведения отношений коммутативный закон не выполняется.

Для выражения матрицы произведения двух отношений a и b, заданных булевыми матрицами и , введем понятие "булево сложение" , определив его следующим образом:

0 0 = 0, 0 1 = 1, 1 0 = 1, 1 1 = 1.

Если теперь

M = (aij), M = (bjk), (i, j, k = 1, 2, …, n),

то

M a°b = (cik),

где

cik = ai1 b1k ain bnk

Матрица M a°b называется булевым произведением матриц M a и M b. Легко проверить, что M a°b является булевой матрицей произведения a°b.

Пример 2.9. Вычислим матрицы произведений a°b и b°a отношений a и b, представленных графами на рисунке 6.

Для этого перемножим соответствующие матрицы M a и M b (строки и столбцы матриц упорядочены в соответствии с алфавитным порядком букв a, b, c, d, обозначающих вершины графа).

Определим еще одну унарную операцию над отношением.

Определение 2.7. Транзитивным замыканием отношения a называется бинарное отношение такое, что x y тогда и только тогда, когда существует такая цепочка элементов из X:

z0 = x, z1, z2,..., zn = y,

что между соседями в этой цепочке выполнено отношение a:

z0 a z1, z1 a z2,..., zn-1 a zn.

Пример 2.10. На рисунке 7 изображены графы, представляющие отношение a и его транзитивное замыкание .

Рис. 7. Транзитивное замыкание отношения a

В матричной форме операция транзитивного замыкания отношения a выражается через объединение степеней матрицы M a отношения a:

В приведенной формуле объединение матриц понимается следующим образом:

.





Поделиться с друзьями:


Дата добавления: 2015-05-06; Мы поможем в написании ваших работ!; просмотров: 1099 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2488 - | 2300 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.