Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Базисы и размерность линейного пространства.




Размерность. Определение. Если существует натуральное число n такое, что X содержит линейно независимую систему из n векторов, а любая система из n + 1 вектора линейно зависима, то X называется n –мерным линейным пространством, а число n – его размерностью.

Будем обозначать n –мерное линейное пространство Xn, где n = dimXn — размерность пространства Xn.

Из определения следует, что размерность линейного пространства равна максимальному количеству линейно независимых векторов.

Базис.

Определение. Упорядоченная система векторов e 1, e 2, …, e nX называется базисом в X, если

  • система векторов e 1, e 2, …, e n линейно независима;
  • любой вектор x пространства X может быть представлен в виде
  x = ξ1 e 1 + ξ2 e 2 + … + ξ nen. (1)
  • Выражение (1) называется разложением вектора x по базису e 1, e 2, …, e n.
  • Коэффициенты ξ1, ξ2, …, ξ n в разложении векторапо данному базису определяются однозначно.

 

40. Комплексные числа, основные понятия, определения.

Комплексным числом называется выражение вида a + ib, где a и b – любые действительные числа, i – специальное число, которое называется мнимой единицей. Для таких выражений понятия равенства и операции сложения и умножения вводятся следующим образом:

  1. Два комплексных числа a + ib и c + id называются равными тогда и только тогда, когда
a = c и b = d.
  1. Суммой двух комплексных чисел a + ib и c + id называется комплексное число
a + c + i (b + d).
  1. Произведением двух комплексных чисел a + ib и c + id называется комплексное число
acbd + i (ad + bc).

Комплексные числа часто обозначают одной буквой, например, z = a + ib. Действительное число a называется действительной частью комплексного числа z, действительная часть обозначается a = Re z. Действительное число b называется мнимой частью комплексного числа z, мнимая часть обозначается b = Im z. Такие названия выбраны в связи со следующими особыми свойствами комплексных чисел.

Заметим, что арифметические операции над комплексными числами вида z = a + i · 0 осуществляются точно так же, как и над действительными числами. Действительно,

 

 

Следовательно, комплексные числа вида a + i · 0 естественно отождествляются с действительными числами. Из-за этого комплексные числа такого вида и называют просто действительными. Итак, множество действительных чисел содержится в множестве комплексных чисел. Множество комплексных чисел обозначается . Мы установили, что , а именно

В отличие от действительных чисел, числа вида 0 + ib называются чисто мнимыми. Часто просто пишут bi, например, 0 + i 3 = 3 i. Чисто мнимое число i 1 = 1 i = i обладает удивительным свойством:

Таким образом:
 

С учётом этого замечательного соотношения легко получаются формулы сложения и умножения для комплексных чисел. Нет нужды запоминать сложную формулу для произведения комплексных чисел – если на комплексные числа смотреть как на многочлены с учётом равенства ,то и перемножать эти числа можно как многочлены. В самом деле,

 

то есть как раз получается нужная формула.

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 691 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2463 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.