Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Парабола, ее определение, уравнение.




Параболой (рис.1) называется геометрическое место точек, равноудалённых от заданной точки F, называемой фокусом параболы, и данной прямой, не проходящей через эту точку и называемой директрисой параболы.

Уравнение параболы (рис.1):

 

y 2 = 2 p x.

 

Здесь ось ОХ является осью симметрии параболы.

 

Пусть Р (х 1, у 1) – точка параболы, тогда уравнение касательной к параболе в данной точке имеет вид:

 

у 1 y = p (x + х 1).

 

Условие касания прямой y = m x + k и параболы y 2 = 2 p x:

 

2 m k = p.

Понятия алгебраической операции, группоида, полугруппы и группы.

Определение алгебраической операции. Соответствие, в силу которого каждой паре a, b элементов множества M, взятых в данном порядке, соответствует единственный третий элемент с того же множества M, называется алгебраической операцией, определенной в M.

Г руппоид (тоже самое что и магма, только термин группоид старше) - множество с одной бинарной операцией , обычно называемой умножением. Помимо требования замкнутости множества относительно заданной на нём операции, других требований к операции и множеству не предъявляется.

Полугруппой называется всякое множество с заданной на нем бинарной ассоциативной операцией. Или это группоид с ассоциативной операцией. Пример: Положительные целые числа с операцией сложения. Любая группа является также и полугруппой.

Структура: Если , то принято обозначать

Группа — непустое множество с определённой на нём бинарной операцией, удовлетворяющей указанным ниже аксиомам.

Примерами групп являются действительные числа с операцией сложения, множество вращений плоскости вокруг начала координат и т. п.

Определения. Непустое множество с заданной на нём бинарной операцией называется группой , если выполнены следующие аксиомы:

1. ассоциативность: ;

2. наличие нейтрального элемента: ;

3. наличие обратного элемента:

 

32. Определение кольца и поля. Простейшие свойства колец и полей.

Определение кольца

Кольцом называется множество элементов, на котором определены две операции – сложение и умножение, и в выполняются следующие аксиомы:

  1. R.1. Множество является аддитивной абелевой группой.
  2. R.2. Для любых двух элементов и из определено их произведение: (замкнутость операции умножения).
  3. R.3. Для любых трех элементов , и из выполняется ассоциативный закон, т.е. и .
  4. R.4. Для любых трех элементов , и из выполняется дистрибутивный закон, т.е. справедливы равенства: и .

Определение поля

Полем называют коммутативное кольцо с единицей, в котором каждый ненулевой элемент имеет мультипликативный обратный элемент (т.е. обратный по умножению).

Другими словами, полем называют множество, которое является аддитивной абелевой группой; ненулевые же элементы этого множества образуют мультипликативную абелевую группу, и выполняется закон дистрибутивности.

По аналогии с группами число элементов поля называется порядком поля. Поля, порядки которых конечны, называются конечными полями. Конечные поля имеют наибольшее значение в теории кодирования.

Отметим некоторые свойства полей, вытекающие из их определения.

1. Для любого элемента поля .

2. Для ненулевых элементов и поля .

3. Для любых элементов и поля .

4. Если и , то .





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 534 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2217 - | 2173 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.