Интенсивное освоение природных ресурсов при разработке месторождений углеводородного сырья на территории РФ выявило значительно взаимовлияние природной среды и инженерного сооружения, которое во многом определяет надежность и безопасность функционирования магистральных трубопроводов.
Для доставки добываемой нефти и газа возникает необходимость строительства трубопроводов часто в неблагоприятных природных условиях. Решение данной задачи требует особого внимания к обеспечению промышленной и экологической безопасности проектирования, строительства и эксплуатация систем магистральных трубопроводов.
Авария на магистральном трубопроводе - авария на трассе трубопровода, связанная с выбросом и выливом под давлением опасных химических или пожаровзрывоопасных веществ, приводящая к возникновению техногенной чрезвычайной ситуации.
Протяженность магистральных трубопроводов России составляет около 220 тыс. км, в т.ч. более 150 тыс.км.газопроводных магистралей, около 50 тыс. км. нефтепроводных, около 20 тыс.км. нефтепродуктопроводных.
Вопросы безопасности при авариях на химически опасных объектах (ХОО)
Характерной особенностью значительной части объектов экономики является их химическая опасность. Из общего числа ОЭ более 75% являются химически опасными объектами.
ХОО — объект хранения, переработки, использования или транспортировки опасных химических веществ (ОХВ), при аварии на котором или при разрушении которого может произойти гибель или химическое заражение людей, сельскохозяйственных животных и растений, а также химическое заражение природной среды. Число таких объектов в РФ превышает 3 тыс.
Опасное химическое вещество (ОХВ) — химическое вещество, прямое или опосредованное воздействие которого на человека может вызвать острые и хронические заболевания людей или их гибель.
Аварийно химически опасное вещество (АХОВ) — опасное химическое вещество, выброс которого при химической аварии приводит к химическому заражению окружающей среды в поражающих живые организмы количествах (концентрациях, токсодозах).
В настоящее время различные перечни вредных веществ насчитывают сотни и тысячи различных химических соединений. Естественно, что многие вредные вещества могут представлять значительную угрозу персоналу ОЭ и населению в случае аварийных выбросов (проливов) в силу своих токсических и физико-химических свойств.
К наиболее распространенным ОХВ относят: хлор (С12), аммиак (NH3), водород цианистый (HCN), водород мышьяковистый (AsH3), акролеин (СН2=СНСНО), ацетонитрил (CH3CN), фосген (СОС12), формальдегид (СН20), хлорциан (C1CN), треххлористый фосфор (РС13), сероуглерод (CS2), диоксид серы (S02), оксид этилена (СН20) и др.
Перечень ОХВ сведен к 34 наименованиям, но в этом перечне выделено 21 наименование, которое названо АХОВ.
В количественном отношении хлор и аммиак по праву занимают первые два места. Значительные их запасы сосредоточены на объектах пищевой, мясомолочной промышленности, холодильниках торговых баз, в жилищно-коммунальном хозяйстве. Так, на овощебазах содержится до 150 т аммиака, используемого в качестве хладагента, а на станциях водоподготовки — от 100 до 400 т хлора. Статистика показывает, что наиболее опасными (не с точки зрения токсичности) по числу случаев гибели людей являются хлор и аммиак
Поражающим фактором ОХВ является токсическое воздействие на людей и животных жидкой фазы, первичного и вторичного облака паров ОХВ и зараженных ими объектов.
Выброс ОХВ (АХОВ) — не предусмотренный регламентом их выход из технологических установок (емкостей для хранения или транспортирования) при их разгерметизации.
Пролив опасных химических веществ — выброс жидкой фазы ОХВ.
На ХОО могут создаваться запасы ОХВ на 3—15 суток работы и составлять тысячи тонн. Они находятся в резервуарах складов, технологической аппаратуре и транспортных средствах (трубопроводах, цистернах).
Наземные резервуары могут располагаться группами, имея один резервный резервуар, или стоять отдельно. Для каждой группы резервуаров или отдельных больших хранилищ по периметру оборудуется замкнутое обвалование или ограждающая стенка (система заградительных сооружений (защитных дамб), или земляных валов, предупреждает растекание). Они позволяют при аварии удержать разлившиеся ОХВ на меньшем участке местности, т.е. сократить площадь испарения. Около 60% общего числа хранилищ защищается обваловкой из грунта.
В обычных условиях ХОВ могут быть в твердом, жидком или газообразном состоянии. Газ (пар) занимает большой объем, поэтому при производстве, использовании, хранении и перевозках газообразные ХОВ могут переводиться в сжиженное состояние или находиться под давлением. Это может значительно увеличить количество ХОВ, выбрасываемых при аварии в атмосферу, и повлиять на состав образующегося при этом облака.
Оценка степени потенциальной опасности химических производств может быть определена по следующим пяти показателям:
– степени токсической опасности ОХВ (ПОЗ), используемых на объекте (определяется классом опасности ОХВ)
– риску возникновения аварии на объекте
– характеру развития возможной химической аварии
– масштабам возможных последствий химической аварии (ПО,);
– пожаровзрывоопасности объекта (П05).
Каждый из этих показателей имеет 4 степени опасности. Категория опасности ХОО определяется по обобщенному показателю опасности (ОПО), равному сумме вышерассмотренных частных показателей.
Критерием для определения химической опасности объекта является количество населения, попадающего в зону возможного химического загрязнения (ЗВХЗ), которая представляет собой круг радиусом, равным наибольшей глубине распространения облака загрязненного воздуха с пороговой концентрацией.
Существует четыре степени химической опасности:
I — в ЗВХЗ попадает более 7 тыс. человек,
II — от 40 до 75 тыс. человек, I
II— менее 40 тыс. человек,
IV — ЗВХЗ не выходит за пределы территории объекта или его санитарно-защитной зоны.
По путям воздействия на организм человека ОХВ подразделяют на 3 группы:
– ингаляционного действия (ИД) — действующие через органы дыхания;
– кожно-резорбтивного действия (КРД) — действующие через кожные покровы;
– перорального действия (ПД) — действующие через желудочно-кишечный тракт.
Через дыхательные пути химические вещества поступают в организм в виде газов, паров и аэрозолей, парогазовых или парогазо-аэрозольных комплексов. Этот путь имеет первостепенное значение, поскольку всасывание веществ происходит с очень большой поверхности легочных альвеол (100—120 м2), намного превышающей площадь всасывающей поверхности пищеварительного канала и кожи. Проникновение газов и паров из альвеолярного воздуха в кровь подчиняется закону простой диффузии, в соответствии с которым процесс перехода веществ из газообразной среды в жидкую происходит вследствие разности парциального давления и продолжается до наступления равновесия концентраций в обеих фазах.
По виду воздействия (клинике поражения) ОХВ условно делят на группы:
– вещества с преимущественно удушающим действием (хлор, фосген, хлорпикрин, треххлористый фосфор, хлорид серы, оксихлорид серы);
– вещества преимущественно общеядовитого действия (оксид углерода, цианистый водород, динитрофенол, динитроортокрезол, этиленхлоргидрин, этиленфторгидрин);
– вещества, обладающие удушающим и общеядовитым действием (акрилонитрил, азотная кислота и оксиды азота, диоксид серы, фтористый водород);
– вещества, действующие на генерацию, проведение и передачу нервных импульсов — нейротропные яды (сероуглерод, тетраэтилсвинец, фосфорорганические соединения);
– вещества, обладающие удушающим и нейротропным действием (аммиак, несимметричный диметилгидразин, гидразин);
– метаболические яды, нарушающие обмен веществ в живых организмах (оксид этилена, дихлорэтан, диоксин, полихлорированные бензофураны).
Важнейшей характеристикой ОХВ является их токсичность — способность оказывать поражающее действие на организм, измеряется его абсолютным количеством (дозой), вызывающим определенный биологический эффект, т.е. определенные патологические изменения в организме. В промышленной токсикологии из общего числа промышленных ядов к ОХВ отнесены те вещества, смертельные дозы которых для человека не превышают 100 мг/кг, т.е. первого и второго класса опасности. Для более точной характеристики ОХВ используют понятия «токсическая доза» и «предельно допустимая концентрация» (ПДК).
Токсическая доза (Д) ОХВ — количество вещества (доза), вызывающее определенный токсический эффект.
Для характеристики токсичности ОХВ при воздействии на человека приняты следующие токсические дозы:
ингаляционно: среднесмертельная LD50, средневыводящая из строя ID50, среднепороговая PD50,
кожно-резорбтивно: среднесмертельная LD50 (количество вредного вещества, вызывающего гибель 50% людей при однократном нанесении на кожу),
перорально - среднесмертельная LD50 (количество вредного вещества, вызывающего гибель 50% людей при однократном введении в желудок).
Предельно допустимая концентрация (ПДК) — это концентрация, которая при ежедневном воздействии на человека в течение длительного времени не вызывает патологических изменений и заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами диагностики.
Пороговая концентрация — минимальная концентрация ОХВ, вызывающая начальные симптомы поражения.
К основным характеристикам ОХВ также принято относить агрессивность и стойкость.
Агрессивность — это способность ОХВ оказывать вредное воздействие на элементы объектов экономики и окружающую природную среду.
Стойкость — это продолжительность сохранения поражающей способности ОХВ.
По токсичности все химические вещества делят на 6 групп:
1.чрезвычайно токсичные — ICt50 меньше 1 мг-мин/л (производные мышьяка, ртути, цианистые соединения и т.п.);
2.высокотоксичные — ICt50 от 1 до 5 мг мин/л (хлор, хлориды, фосген и др.);
3.сильнотоксичные — ICt50 от 6 до 20 мг мин/л (аммиак, серная, соляная, азотная кислоты);
4.умеренно токсичные — ICt50 от 21 до 80 мг-мин/л;
5. малотоксичные — ICt50 от 81 до 160 мг мин/л;
6. практически нетоксичные — ICt50 больше 160 мг мин/л.
Все ОХВ по степени воздействия на организм человека подразделяются на четыре класса опасности:
1-й — чрезвычайно опасные;
2-й — высокоопасные; 3-й — умеренно опасные;
4-й — малоопасные.
При оценке потенциальной опасности химических веществ необходимо принимать во внимание не только токсические, но и физико-химические свойства, характеризующие их поведение в атмосфере, на местности и в воде. В частности, важнейшим физическим параметром, определяющим потенциальную опасность токсичных веществ ингаляционного действия при выбросах (проливах), является их способность образовывать газовое облако с высокими поражающими концентрациями паров в воздухе (летучесть).
К основным характеристикам ОХВ также принято относить агрессивность и стойкость. Агрессивность – способность ОХВ оказывать вредное воздействие на элементы объектов экономики и природной среды.
Стойкость – это продолжительность сохранения поражающей способности ОХВ.
В зависимости от физико-химических свойств аварийно химически опасных веществ, условий их хранения и транспортировки при авариях на химически опасных объектах могут возникнуть чрезвычайные ситуации с химической обстановкой четырех основных типов.
Чрезвычайные ситуации с химической обстановкой первого типа возникают в случае разгерметизации (взрыва) емкостей или технологического оборудования, содержащих газообразные (под давлением) АХОВ. При этом образуется первичное парогазовое или аэрозольное облако с высокой концентрацией АХОВ, распространяющееся по ветру.
Основным поражающим фактором при чрезвычайных ситуациях с химической обстановкой первого типа является ингаляционное воздействие на людей и животных высоких (смертельных) концентраций паров АХОВ. Масштабы поражения при этом зависят:
· от количества выброшенных АХОВ,
· концентрации ядовитого вещества,
· плотности паров АХОВ (легче или тяжелее воздуха),
· размеров облака,
· скорости ветра,
· состояния приземного слоя атмосферы (инверсия, конвекция, изотермия),
· характера местности (открытая местность или городская застройка),
· плотности населения.
Существенное влияние на поведение ОХВ оказывают скорость ветра, степень вертикальной устойчивости воздуха и топографические особенности местности. Глубина распространения облака ОХВ практически прямо пропорциональна начальной концентрации ОХВ и скорости ветра. При конвекции глубина распространения первичного облака будет в 3 раза меньше, а при инверсии — в 3 раза больше, чем при изотермии. Если на пути облака паров встречается лесной массив или возвышенность, то глубина его распространения резко уменьшается.
Город существенно повышает температуру воздуха, что приводит к возникновению внутри города так называемого острова тепла. Остров тепла оказывает значительное влияние на степень вертикальной устойчивости воздуха, вызывая подъем воздушных масс, на смену которым от окраин будут двигаться более холодные массы воздуха, в том числе и зараженного ОХВ. Застройка и планировка городов, особенно больших с высотными зданиями, также влияют на аэродинамику воздушных потоков и поведение облака зараженного воздуха.
Пары ОХВ, особенно тех, плотность которых больше плотности воздуха (формальдегид, хлор), быстро заполняют дворы, тупики, подвалы и держатся там дольше, чем на открытой местности.
В отличие от ОХВ, которые тяжелее воздуха, аммиак, синильная кислота, плотность которых меньше плотности воздуха, способны проникать в более высокие слои атмосферы, включая даже верхние этажи высотных домов.
Типовые варианты ЧС могут быть осложнены взрывами и пожарами, что станет причиной возникновения дополнительных поражающих факторов, таких как ударная волна, обрушение зданий и сооружений с образованием завалов, прямое воздействие огня, тепловое излучение, задымление, образование токсичных продуктов горения и др.
Метеорологические условия среды оказывают влияние на терморегуляцию организма, что в свою очередь влечет за собой изменение восприимчивости организма к вредным веществам. Так, увеличение температуры воздуха ведет к усиленному потоотделению, ускорению многих биохимических процессов и изменению веществ. Учащение дыхания и усиление кровообращения ведут к увеличению поступления вредных веществ в организм через органы дыхания. Расширение сосудов кожи и слизистых оболочек повышает скорость всасывания токсических веществ через кожу и дыхательные пути. Высокая температура увеличивает летучесть многих веществ и повышает их концентрации в воздухе. Усиление токсического действия при повышенных температурах отмечено, например, в отношении таких веществ: паров бензина, оксидов азота, паров ртути, хлорофоса и др.
Влажность воздуха также может увеличивать опасность отравления, в особенности раздражающими газами. Это объясняется усилением процессов гидролиза. Растворение газов и образование тумана кислот и щелочей ведет к усилению раздражающего действия на слизистую оболочку. Кроме того, эти вещества задерживаются в органах дыхания.
Чрезвычайные ситуации с химической обстановкой второго типа возникают при аварийных выбросах или проливах, используемых в производстве, хранящихся или транспортируемых сжиженных ядовитых газов (аммиак, хлор и др.), перегретых летучих токсических жидкостей с температурой кипения ниже температуры окружающей среды (окись этилена, фосген, окислы азота, сернистый ангидрид, синильная кислота и др.). При этом часть АХОВ (не более 10%) мгновенно испаряется, образуя первичное облако паров смертельной концентрации; другая часть выливается в поддон или на подстилающую поверхность, постепенно испаряется, образуя вторичное облако с поражающими концентрациями.
Поражающие факторы в чрезвычайных ситуациях с химической обстановкой второго типа проявляются в ингаляционном воздействии на людей и животных смертельных концентраций первичного облака (кратковременное) и в продолжительном воздействии (часы, сутки) вторичного облака с поражающими концентрациями паров.
Чрезвычайные ситуации с химической обстановкой третьего типа возникают при проливе сжиженных или жидких АХОВ с температурой кипения ниже или близкой к температуре окружающей среды (фосген, четырехокись азота и др.), а также при горении большого количества удобрений (например, нитрофоски). При этом образуется вторичное облако паров АХОВ с поражающими концентрациями, которое может распространяться на большие расстояния. При чрезвычайных ситуациях с химической обстановкой третьего типа образуется вторичное облако паров АХОВ с поражающими концентрациями, которое может распространяться на большие расстояния.
Чрезвычайные ситуации с химической обстановкой четвертого типа возникают при проливе жидких с температурой кипения значительно выше температуры окружающей среды или твердых - несимметричный диметилгидразин, фенол, сероуглерод, диоксин, соли синильной кислоты. При этом происходит заражение местности (грунта, растительности, воды) в опасных концентрациях. Основными поражающими факторами при чрезвычайных ситуациях с химической обстановкой четвертого типа являются опасные последствия заражения людей и животных при длительном нахождении их на зараженной местности в результате перорального и резорбтивного воздействия АХОВ на организм.
В результате аварии на химически опасном объекте может произойти нарушение технологических процессов на производстве, повреждение трубопроводов, емкостей, хранилищ, транспортных средств, приводящее к выбросу АХОВ в атмосферу в количествах, в которых они могут вызывать массовое поражение людей, животных, а также химическое заражение воды, почвы и т.п.