Рассмотрим теперь одноканальную СМО с ожиданием.
Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание поток имеет интенсивность λ. Интенсивность потока обслуживания равна μ (т. е. в среднем непрерывно занятый канал будет выдавать μ обслуженных заявок). Длительность обслуживания — случайная величина, подчиненная показательному закону распределения. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.
Рассмотрим систему с ограниченной очередью. Предположим, что независимо оттого, сколько требований поступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N -требований (заявок), из которых одна обслуживается, а (N -1) ожидают, Клиенты, не попавшие в ожидание, вынуждены обслуживаться в другом месте и такие заявки теряются.
Обозначим - вероятность того, что в системе находится n заявок. Эта величина вычисляется по формуле:
Здесь - приведенная интенсивность потока. Тогда вероятность того, что канал обслуживания свободен и в системе нет ни одного клиента, равна: .
С учетом этого можно обозначить
Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N-1):
вероятность отказа в обслуживании заявки:
относительная пропускная способность системы:
абсолютная пропускная способность:
А = q ∙λ;
среднее число находящихся в системе заявок:
среднее время пребывания заявки в системе:
;
средняя продолжительность пребывания клиента (заявки) в очереди:
Wq = Ws - 1/μ;
среднее число заявок (клиентов) в очереди (длина очереди):
Lq =λ(1- PN) Wq.
Рассмотрим пример одноканальной СМО с ожиданием.
Пример 9.2. В зону таможенного контроля в пункте пропуска автомобили въезжают по системе электронной очереди. Каждое окно оформления прибытия/убытия представляет собой одноканальную СМО. Число стоянок для автомобилей, ожидающих оформления, ограниченно и равно 3, то есть (N -1)=3. Если все стоянки заняты, т. е. в очереди уже находится три автомобиля, то очередной автомобиль в зону таможенного контроля не пропускается, т.е. в очередь на обслуживание не становится. Поток автомобилей, прибывающих на оформление имеет интенсивность λ =0,85 (автомобиля в час). Время оформления автомобиля распределено по показательному закону и в среднем равно =1,05 час. Требуется определить вероятностные характеристики окна оформления прибытия/убытия пункта пропуска, работающего в стационарном режиме.
Решение.
Интенсивность потока обслуживаний автомобилей:
.
Приведенная интенсивность потока автомобилей определяется как отношение интенсивностей λ и μ, т.е.
.
Вычислим вероятности нахождения п заявок в системе:
;
P 1=ρ∙ P 0=0,893∙0,248=0,221;
P 2=ρ 2∙ P 0=0,8932∙0,248=0,198;
P 3=ρ 3∙ P 0=0,8933∙0,248=0,177;
P 4=ρ 4∙ P 0=0,8934∙0,248=0,158.
Вероятность отказа в обслуживании автомобиля:
Pотк = Р 4= ρ 4∙ P 0≈0,158.
Относительная пропускная способность окна оформления:
q =1– Pотк =1-0,158=0,842.
Абсолютная пропускная способность окна оформления
А =λ∙ q =0,85∙0,842=0,716 (автомобиля в час).
Среднее число автомобилей, находящихся на обслуживании и в очереди (т.е. в системе массового обслуживания):
.
Среднее время пребывания автомобиля в системе:
часа.
Средняя продолжительность пребывания заявки в очереди на обслуживание:
Wq = Ws -1/μ=2,473-1/0,952=1,423 часа.
Среднее число заявок в очереди (длина очереди):
Lq=λ∙(1-PN)∙Wq= 0,85∙(1-0,158)∙1,423=1,02.
Работу рассмотренного окна оформления можно считать удовлетворительной, так как не обслуживается в среднем 15,8% случаев (Ротк =0,158).