Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Одноканальная СМО с ожиданием и ограниченной очередью




Рассмотрим теперь одноканальную СМО с ожиданием.

Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание поток имеет интенсивность λ. Интенсивность потока обслуживания равна μ (т. е. в среднем непрерывно занятый канал будет выдавать μ обслуженных заявок). Длительность обслуживания — случайная величина, подчи­ненная показательному закону распределения. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Рассмотрим систему с ограниченной очередью. Предположим, что независимо оттого, сколько требований по­ступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N -требований (заявок), из которых одна обслуживается, а (N -1) ожидают, Клиенты, не попавшие в ожидание, вынуждены об­служиваться в другом месте и такие заявки теряются.

Обозначим - вероятность того, что в системе находится n заявок. Эта величина вычисляется по формуле:

Здесь - приведенная интенсивность потока. Тогда вероятность того, что канал обслуживания свободен и в системе нет ни одного клиента, равна: .

С учетом этого можно обозначить

Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N-1):

вероятность отказа в обслуживании заявки:

 

относительная пропускная способность системы:

абсолютная пропускная способность:

А = q ∙λ;

среднее число находящихся в системе заявок:

среднее время пребывания заявки в системе:

;

средняя продолжительность пребывания клиента (заявки) в очереди:

Wq = Ws - 1/μ;

среднее число заявок (клиентов) в очереди (длина очереди):

Lq =λ(1- PN) Wq.

Рассмотрим пример одноканальной СМО с ожиданием.

Пример 9.2. В зону таможенного контроля в пункте пропуска автомобили въезжают по системе электронной очереди. Каждое окно оформления прибытия/убытия представляет собой одноканальную СМО. Число стоянок для автомобилей, ожидающих оформления, ограниченно и равно 3, то есть (N -1)=3. Если все стоянки заняты, т. е. в очереди уже находится три автомобиля, то очередной автомобиль в зону таможенного контроля не пропускается, т.е. в очередь на обслуживание не становится. Поток автомобилей, прибывающих на оформление имеет интенсивность λ =0,85 (автомобиля в час). Время оформления автомобиля распределено по показательному закону и в среднем равно =1,05 час. Требуется определить вероятностные характеристики окна оформления прибытия/убытия пункта пропуска, работающего в стационарном режиме.

Решение.

Интенсивность потока обслуживаний автомобилей:

.

Приведенная интенсивность потока автомобилей определяется как отношение интенсивностей λ и μ, т.е.

.

Вычислим вероятности нахождения п заявок в системе:

;

P 1=ρ∙ P 0=0,893∙0,248=0,221;

P 2 2P 0=0,8932∙0,248=0,198;

P 3 3P 0=0,8933∙0,248=0,177;

P 4 4P 0=0,8934∙0,248=0,158.

Вероятность отказа в обслуживании автомобиля:

Pотк = Р 4= ρ 4P 0≈0,158.

Относительная пропускная способность окна оформления:

q =1– Pотк =1-0,158=0,842.

Абсолютная пропускная способность окна оформления

А =λ∙ q =0,85∙0,842=0,716 (автомобиля в час).

Среднее число автомобилей, находящихся на обслуживании и в очереди (т.е. в системе массового обслуживания):

.

Среднее время пребывания автомобиля в системе:

часа.

Средняя продолжительность пребывания заявки в очереди на обслуживание:

Wq = Ws -1/μ=2,473-1/0,952=1,423 часа.

Среднее число заявок в очереди (длина очереди):

Lq=λ∙(1-PN)∙Wq= 0,85∙(1-0,158)∙1,423=1,02.

Работу рассмотренного окна оформления можно считать удовлетворительной, так как не обслуживается в среднем 15,8% случаев (Ротк =0,158).





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 1239 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2219 - | 2164 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.