Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Получение одноатомных спиртов




1. Гидратация алкенов:

СH3–CH=CH2+H2О CH3–CH(ОН)–CH3.

 

2. Гидролиз галогеноалканов:

CH3–CH2–Br + KOH CH3–CH2–ОН + KBr.

3. Восстановление альдегидов и кетонов:

альдегид ® первичный спирт кетон ® вторичный спирт
       

 

4. Получение этанола спиртовым брожением сахаристых веществ:

С6Н12О6 2CH3–CH2–ОН + 2СО2.

(глюкоза)

5. Получение метанола из синтез-газа (смеси СО и Н2):

СО + 2Н2 CH3–ОН.

 

 

Многоатомные предельные спирты

 

Многоатомные спирты содержат несколько гидроксильных групп, присоединенных к разным атомам углерода. Присоединение нескольких гидроксильных групп к одному атому углерода невозможно, так как при этом происходит процесс дегидратации и образуется соответствующий альдегид или карбоновая кислота:

Примеры многоатомных спиртов:

этандиол (этиленгликоль) двухатомный пропантриол (глицерин) трехатомный
   
ксилит сорбит
заменители сахара

Многоатомные спирты содержат асимметрические атомы углерода и обладают оптической изомерией.

В качестве примера циклических спиртов можно привести шестиатомные циклические спирты С6Н6(ОН)6 – инозиты, один из изомеров которых (мезоинозит) входит в состав фосфолипидов:

Химические свойства многоатомных спиртов

1. Кислотные свойства

Многоатомные спирты обладают большими кислотными свойствами по сравнению с одноатомными спиртами, что объясняется взаимным влиянием функциональных групп:

гликолят натрия

2. Качественная реакция на многоатомные спирты – взаимодействие со свежеосажденным гидроксидом меди(II):

голубой осадок ® темно-синий раствор (глицерат меди)

 

3. Образование полных и неполных эфиров с неорганическими и органическими кислотами:

;

 

(нитроглицерин);

.

4. Дегидратация многоатомных спиртов

диоксан

Получение многоатомных спиртов

1. Гидролиз дигалогеноалканов:

Br–CH2–CH2–Br + 2KOH НО–CH2–CH2–ОН + 2KBr.

 

2. Окисление алкенов водным раствором перманганата калия (реакция Вагнера):

3CH2=CH2+2KMnO4+4H2O®3HO–CH2–CH2–OH+2MnO2¯+2KOH.

3. Получение глицерина:

(гидролиз жиров)

 

 

ФЕНОЛЫ

Фено́лы — органические соединения ароматического ряда, в молекулах которых гидроксильные группы связаны с атомами углерода ароматического кольца. По числу ОН-групп различают:

· одноатомные фенолы (аренолы): фенол (C6H5OH) и его гомологи:

фенол орто -крезол мета -крезол пара -крезол
Еще один изомер состава С7Н7ОН, бензиловый спирт, не относится к фенолам, так как функциональная группа не присоединена непосредственно к ароматической системе. Гидроксильная группа может быть присоединена и к более сложным ароматическим системам, например,
бензиловый спирт a-нафтол b-нафтол
         
  • двухатомные фенолы (арендиолы):
катехол резорцин гидрохинон

 

 

  • трехатомные фенолы (арентриолы):
пирогаллол флороглюцин оксигидрохинон

Для фенола и его гомологов возможны два типа изомерии: изомерия положения заместителей в бензольном кольце и изомерия боковой цепи (строения алкильного радикала и числа радикалов).

Физические свойства.

Фенол – бесцветное кристаллическое вещество, розовеющее на воздухе. Обладает характерным запахом. Хорошо растворяется в воде, этаноле, ацетоне и других органических растворителях. Раствор фенола в воде – карболовая кислота. Другие фенолы – бесцветные кристаллические вещества или жидкости, температуры кипения которых выше температур кипения предельных спиртов с такими же молярными массами. Фенолы малорастворимы в воде, хорошо растворяются в органических растворителях, токсичны.

Химические свойства.

Для структуры фенола характерно взаимодействие неподеленной пары электронов атома кислорода и p-электронов ароматического кольца. Результатом этого является смещение электронной плотности с гидроксильной группы на кольцо, при этом связь О–Н становится более полярной, а значит, менее прочной (фенолы проявляют свойства слабых кислот).

Гидроксильная группа по отношению к бензольному кольцу является заместителем I рода, ориентируя реакции замещения в орто- и пара-положения.

Реакции фенола можно разделить на две группы: реакции с участием функциональной группы и реакции с участием ароматического кольца.

 

Реакции по гидроксильной группе

1. Кислотные свойства:

2C6H5OH + 2Na ® H2­ + 2C6H5ONa (фенолят натрия);

C6H5OH + NaOH ® C6H5ONa + H2O;

C6H5ONa + H2O + CO2 ® C6H5OH + NaHCO3

(кислотные свойства фенола слабее, чем угольной кислоты);

Фиолетовое окрашивание растворов в присутствии хлорида железа(III) – качественная реакция на фенолы.

 

В том случае, когда гидроксильная группа не связана непосредственно с ароматическим циклом, а находится в составе заместителя, влияние бензольного кольца на функциональную группу ослабевает и кислотные свойства не проявляются (класс ароматических спиртов). Например, бензиловый спирт реагирует с натрием и не реагирует с NaOH.

 

2. Образование сложных и простых эфиров (в отличие от спиртов фенолы не реагируют с карбоновыми кислотами, сложные эфиры получают косвенным путем – из хлорангидридов кислот и фенолятов): С6Н5ОН + СН3СООН ¹

 

C6H5ONa + R–Br ® C6H5OR + NaBr

 

3. Окисление (фенолы легко окисляются даже под действием кислорода воздуха, поэтому при стоянии постепенно окрашиваются в розовый цвет):

бензохинон  

 

Реакции по бензольному кольцу.

1. Галогенирование:

(в отличие от бензола и его гомологов фенол обесцвечивает бромную воду).

 

 

2. Нитрование:

Тринитрофенол (пикриновая кислота) – кристаллическое вещество желтого цвета, по силе приближается к неорганическим кислотам).

 

3. Поликонденсация (взаимодействие с формальдегидом и образование фенолформальдегидных смол):

Получение фенола

3. Перегонка каменноугольной смолы.

4. Получение фенола из галогенбензолов:

С6Н5Сl + 2NaOH C6H5ONa + NaCl + H2O;

C6H5ONa + HCl ® C6H5OH + NaCl.

 

5. Каталитическое окисление изопропилбензола (кумола) – кумольный метод:

.

 

АЛЬДЕГИДЫ И КЕТОНЫ

 

Альдегиды и кетоны относятся к карбонильным соединениям и содержат карбонильную группу . В альдегидах карбонильная группа обязательно связана с атомом водорода (находится в положении 1 углеродной цепи), в кетонах она расположена в середине цепи и связана с двумя атомами углерода. Общая формула альдегидов и кетонов С2H2nO (межклассовые изомеры). Для альдегидов существует только изомерия углеродного скелета, для кетонов – изомерия углеродного скелета и изомерия положения функциональной группы.

Номенклатура альдегидов и кетонов:

метаналь (формальдегид или муравьиный альдегид) этаналь (ацетальдегид или уксусный альдегид) пропаналь (пропионовый альдегид)
бутаналь (масляный альдегид) метилпропаналь (изомасляный альдегид) пропеналь (акролеин)
пропанон (диметилкетон или ацетон) бутанон (метилэтилкетон) пентанон-1 (метилпропилкетон)
пентанон-2 (диэтилкетон) метилбутанон (метилизопропил кетон) метилфенилкетон (ацетофенон)
бензойный альдегид дифенилкетон (бензофенон)
       

 

Физические свойства

Формальдегид при комнатной температуре – газ, температура кипения ацетальдегида +20°С. Температуры кипения альдегидов ниже, чем температуры кипения соответствующих спиртов (отсутствуют водородные связи между молекулами). Ацетон и его ближайшие гомологи – жидкости, легче воды. Альдегиды и кетоны легко летучи и имеют резкий запах. Раствор формальдегида в воде – формалин.

Химические свойства

Атом углерода карбонильной группы находится в состоянии sp 2-гибридизации (плоский фрагмент). Электроны двойной связи сильно смещены в сторону более электроотрицательного атома кислорода (связь С=О полярная). Перераспределение зарядов в карбонильной группе оказывает влияние на полярность С–Н связей соседнего с карбонильной группой атома углерода (a-положение):

Для альдегидов и кетонов характерны реакции присоединения по двойной связи карбонильной группы и реакции замещения атома водорода у a-атома углерода на галоген. Кроме того, альдегиды способны окисляться по атому водорода при карбонильной группе.

 

Реакции присоединения по двойной связи С=О группы (нуклеофильное присоединение SN)

В связи с тем, что связь С=О альдегидов и кетонов имеет полярный характер, она легко разрывается под действием полярных молекул типа Н–Х. В общем виде реакцию можно представить в виде:

1. Присоединение водорода (восстановление альдегидов и кетонов до первичных и вторичных спиртов):

2. Присоединение воды (гидратация) – обратимый процесс (гидраты устойчивы только в водных растворах):

Метаналь в водных растворах гидратирован на 100%, этаналь – на 50%, ацетон практически не гидратирован.

3. Присоединение спиртов:

(полуацеталь); (ацеталь).

4. Присоединение гидросульфита натрия (реакция служит для выделения альдегидов и кетонов из смесей с другими органическими веществами):

.

5. Присоединение аммиака (H–NH2) и аминов (H–NHR):

 

 

Особым образом происходит присоединение аммиака к уксусному и муравьиному альдегидам:

(гексаметилентетрамин – уротропин, дезинфицирующее средство в урологии при воспалении мочевых путей)

 

5. Присоединение гидразина (H2N–NH2) и фенилгидразина (H2N–NH–С6H5):

5. Присоединение гидроксиламина (NH2OH):

 

Реакции замещения атома водорода у a-атома углерода

Ослабление связи в СН2-группе углеводородного радикала, соседней с функциональной группой альдегида (a-положение), приводит к тому, что именно эти атомы водорода преимущественно заменяются на галоген:

(сильные лакриматоры – вещества, вызывающие слезоотделение).

 

Иодоформная проба – качественная реакция на соединения с карбонильной группой:

Так как первичные и вторичные спирты окисляются иодом до альдегидов и кетонов, то для них тоже характерна иодоформная проба:

 

 

Конденсация альдегидов и кетонов

Реакции идут с участием карбонильной группы и атома водорода в a-положении.

1. Альдольная конденсация:

 

2. Кротоновая конденсация:

При нагревании щелочных растворов альдегидов и кетонов продукты альдольной конденсации отщепляют воду (кротоновая конденсация):

Реакции окисления альдегидов и кетонов

1. Реакция серебряного зеркала (качественная реакция на альдегиды):

 

2. Реакция с гидроксидом меди (II) (качественная реакция на альдегиды):

 

Окисление метаналя (муравьиного альдегида) в этих условиях идет до образования карбоната аммония или оксида углерода (IV):

Кетоны в «мягких» условиях (при нагревании с аммиачным раствором оксида серебра или гидроксида меди (II) не окисляются. В «жестких» условиях (нагревание с перманганатом калия или дихроматом калия) окисляются с разрывом углеродной цепи и образованием смеси кислот:

 

Полимеризация низших альдегидов

Кетоны в реакции полимеризации не вступают.

 

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 4144 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

2483 - | 2177 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.