Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Составление логических функций.




 

Логическая функция может быть записана аналитически различными сочетаниями операций сложения и умножения переменных. Однако с точки зрения представления логической функции и последующего синтеза логической схемы наиболее удобны формы записи, при которых функция выражается либо в виде суммы произведений переменных, либо в виде произведения их сумм.

Запись логической функции в виде суммы произведений переменных называют дизъюнктивной нормальной формой (ДНФ):

а запись функции в виде произведения суммконъюнктивной нормальной формой (КНФ):

Инверсия любой функции, записанной в дизъюнктивной (конъюнктивной) нормальной форме, по правилу (1.5) дает замену записи на конъюнктивную (дизъюнктивную) нормальную форму. Например, инверсия функции

имеет вид

.

Логическую функцию, заданную любым аналитическим выражением, можно преобразовать к ДНФ или КНФ, пользуясь правилами алгебры логики. Для каждой логической функции может существовать несколько равносильных дизъюнктивных и конъюнктивных форм.

Вместе с тем имеется только один вид ДНФ и КНФ, в которых функция может быть записана единственным образом (совершенные нормальные формы). В совершенной дизъюнктивной нормальной форме (СДНФ) каждое входящее слагаемое включает все переменные (с инверсиями и без них) и нет одинаковых слагаемых. В совершенной конъюнктивной нормальной форме (СКНФ) каждый входящий сомножитель включает все переменные (с инверсиями и без них) и нет одинаковых сомножителей.

Логическая функция наиболее наглядно и полно представляется так называемой таблицей соответствия или истинности, в которой для каждой комбинации значений переменных указывается значение функции. Таким образом, таблица истинности определяет алгоритм работы создаваемой цифровой схемы. От табличного представления функции переходят к аналитической записи ее в СДНФ или СКНФ.

Пусть в качестве примера функция F задана в виде табл.2.3. Для комбинаций переменных 2, 7, 8 функция F истинна (т. е. F=1), что означает для указанных комбинаций равенство единице следующих произведений: хуz=1.

Таблица 2.3

Таблица истинности

Номер комбинации X Y Z F
         
         
         
         
         
         
         
         

 

Комбинации переменных, при которых функция истинна, называют конституентами единицы или минтермами. Представление логической функции в виде суммы минтермов определяет ее СДНФ, т. е. в данном случае: .

Функция, определяемая таблицей истинности, может быть представлена не только ее единичными, но и нулевыми значениями. Так, на основании табл.2.3 рассматриваемая функция ложна (F =0 или F=1), если истинно каждое из произведений

Воспользовавшись законом инверсии, приходим к записи функции в СКНФ:

Каждый сомножитель в этом соотношении состоит из суммы переменных, для которых функция обращается в нуль в соответствии с таблицей истинности. Такие суммы называют конституентами нуля или макстермами. Таким образом, произведение макстермов определяет СКНФ функции.

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 731 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2205 - | 2094 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.