Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Ориентированное дерево (называемое также древовидностью) определяется аналогичным образом.




Ориентированное дерево представляет собой ориентированный граф без циклов, в котором полустепень захода каждой вершины, за исключением одной (например, вершины х1 ), равна единице, а полустепень захода вершины х1(называемой корнем этого дерева) равна нулю.

На рисунке 11 показан граф, который является ориентированным деревом с корнем в вершине х1. Из приведенного определения следует, что ориентированное дерево с п вершинами имеет n-1 дуг и связно. Также очевидно, что не всякий ориентированный граф содержит основное ориентированное дерево. Это подтверждает граф, изображенный на рисунке 12.

Рисунок 11 - Ориентированное дерево

Рисунок 12 - Граф без ориентированного остовного графа

Следует отметить, что неориентированное дерево можно преобразовать в ориентированное: надо взять его произвольную вершину в качестве корня и Ребрам приписать такую ориентацию, чтобы каждая вершина соединялась с корнем (только одной) простой цепью.

Обратно, если Т= (X, В) - ориентированное дерево, то Т = (X, В), где В — множество дуг дерева Т без учета их ориентации, является неориентированным деревом.

«Генеалогическое дерево», в котором вершины соответствуют лицам мужского пола, а дуги ориентированы от родителей к детям, представляет собой хорошо известный пример ориентированного дерева. Корень в этом дереве соответствует «основателю» рода (лицу, родившемуся раньше остальных).

В настоящей главе приводится алгоритм порождения всех остовных деревьев произвольного неориентированного графа и даются методы прямого построения кратчайших остовных деревьев во взвешенном графе (в котором веса приписаны дугам). Кратчайшее остовное дерево (SST) графа находит, очевидно, применение при прокладке дорог (газопроводов, линий электропередач и т. д.), когда необходимо связать и точек некоторой сетью так, чтобы общая длина «линий связи» была минимальной. Если точки лежат на евклидовой плоскости, то их можно считать вершинами полного графа G с весами дуг, равными соответствующим «прямолинейным» расстояниям между концевыми точками дуг. Тогда, поскольку «разветвление» дорог допускается только в заданных п точках, SST графа G будет как раз требуемой сетью дорог, имеющей наименьший вес.

Если же «разветвление» дорог можно производить и «вне» заданных n точек, то возможна и более «короткая» (с меньшей стоимостью) сеть. Нахождение такой сети дорог представляет собой хорошо известную задачу Штейнера. Краткому обсуждению этой задачи посвящен последний раздел данной главы.





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 429 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2334 - | 2134 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.