Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Характеристическое уравнение линии второй степени




его корни


Классификация линий второй степени по числу центров

I группа - имеющие единственный центр симметрии,

II группа - не имеющие центра симметрии,

III группа - имеющие прямую центров симметрии.


Канонический вид линий второй степени

I группа:

II группа:

III группа:

где


Необходимые и достаточные признаки линий второй степени

Расположение эллипса и гиперболы относительно исходной системы координат

Координаты нового начала (центра) - решение системы

Угловой коэффициент новой оси (в случае )


Расположение параболы относительно исходной системы координат

Координаты вершины - решение системы, определяемой уравнением параболы и уравнением ее оси:

или

Параметр параболы:

Направляющий вектор оси (в сторону ее вогнутости):

Поверхности второй степени

Канонические уравнения

Сфера

Сфера радиуса R с центром в начале координат:

Параметрические уравнения:

Сфера радиуса R с центром в точке S (a; b; c):


Эллипсоид (рис. 4.18)

Каноническое уравнение:

- трехосный эллипсоид;

- эллипсоид вращения вокруг оси Oz;

- эллипсоид вращения вокруг оси Oy;

- эллипсоид вращения вокруг оси Ox;

- сфера.

Сечения эллипсоида плоскостями - либо эллипс (окружность), либо точка, либо .


Конус второй степени (рис. 4.19)

Каноническое уравнение:

a = b - конус вращения (прямой круговой).

Сечения конуса плоскостями: в плоскости, пересекающей все прямолинейные образующие, - эллипс; в плоскости, параллельной одной прямолинейной образующей, - парабола; в плоскости, параллельной двум прямолинейным образующим, - гипербола; в плоскости, проходящей через вершину конуса, - пара пересекающихся прямых или точка (вершина).

Однополостный гиперболоид (рис. 4.20)

Каноническое уравнение:

a = b - однополостный гиперболоид вращения вокруг оси Oz.

Горловой эллипс:

Асимптотический конус:

Сечения однополостного гиперболоида плоскостями - либо эллипс, либо парабола, либо гипербола, либо пара прямых (прямолинейных образующих).


Прямолинейные образующие

Через произвольную точку проходят две прямолинейные образующие с направляющими векторами и где:

В частности, если точку выбирать на горловом эллипсе то уравнениями прямолинейных образующих будут:

Двуполостный гиперболоид (рис. 4.21)

Каноническое уравнение:

a = b - двуполостный гиперболоид вращения вокруг оси Oz.

Асимптотический конус:

Сечения двуполостного гиперболоида плоскостями: либо эллипс, либо гипербола, либо парабола, либо точка, либо .


Эллиптический параболоид (рис. 4.22)

Каноническое уравнение:

p = q - параболоид вращения вокруг оси Oz.

Сечения эллиптического параболоида плоскостями - либо эллипс, либо парабола, либо точка, либо .

Гиперболический параболоид (рис. 4.23)

Каноническое уравнение:

Сечения гиперболического параболоида плоскостями - либо гипербола, либо парабола, либо пара прямых (прямолинейных образующих).


Прямолинейные образующие

Через каждую точку проходят две прямолинейные образующие:


Эллиптический цилиндр (рис. 4.24)

Каноническое уравнение:

при a = b - круговой цилиндр.

Гиперболический цилиндр (рис. 4.25)

Каноническое уравнение:


Параболический цилиндр (рис. 4.26)

Каноническое уравнение:





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 705 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2240 - | 2072 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.