Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Расщепление пищевых и тканевых липидов




 

Пищевые липиды являются источниками высших жирных кислот, глицерола, аминоспиртов и некоторых других соединений, используемых организмом для синтеза свойственных для него структурных или резервных липидов. Свободные жирные кислоты, наряду с глицеролом и аминоспиртами образуются в организме также при расщеплении резервных или структурных липидов. Еще одним источником высших жирных кислот может служить их синтез из ацетил-СоА, который в свою очередь может быть промежуточным продуктом обмена углеводов или аминокислот (рис.21.1).

 

 

Рис. 21.1. Схема ключевых процессов липидного обмена

 

Одним из ключевых метаболитов липидного обмена является ацетил-СоА, поскольку, во-первых, именно через это соединение осуществляется окислительное расщепление высших жирных кислот; во-вторых, через ацетил-СоА атомы углерода жирных кислот могут быть использованы для пластических целей – для синтеза холестерола или полипреноидов; в третьих, через ацетил-СоА в гепатоцитах углеродные цепи жирных кислот преобразуются в кетоновые тела – гидрофильные «топливные» молекулы, легко транспортируемые в клетки различных органов и тканей; в четвертых, через ацетил-СоА осуществляются метаболические превращения углеродных скелетов аминокислот и моносахаридов в жирные кислоты (ЖК), используемые в дальнейшем для синтеза сложных липидов.

Соединения других классов – аминокислоты и моносахариды – в ходе своего метаболизма образуют промежуточные продукты, которые могут в дальнейшем использоваться в клетке как для синтеза высших жирных кислот, так и для образования других мономерных единиц, необходимых для синтеза сложных липидов: глицерола, этаноламина, холина, сфингозина и пр. Таким образом, обмен липидов оказывается тесно связанным с обменом соединений других классов, а метаболические пути обмена липидов различных классов являются частью метаболической сети, функционирующей в организме.

С пищей в организм человека ежедневно поступает от 80 до 150 г липидов животного и растительного происхождения. В составе липидов в организм поступают полиеновые жирных кислот, которые не синтезируются в организме. Кроме того, с липидами в организм поступают и жирорастворимые витамины – А, D, E и К. Основная масса липидов представлена жирами или триацилглицеролами. Они, наряду с глюкозой служат главными источниками энергии. На долю жиров при рациональном питании приходится не более 30% от общего числа калорий, поступающих с пищей. В пожилом возрасте, а также при малой физической нагрузке потребность в жирах снижается; в условиях физической работы – увеличивается.

 

Катаболизм липидов

 

В расщеплении простых и сложных липидов принимают участие липолитические ферменты, относящиеся к классу гидролаз, а сам процесс расщепления липидов носит название липолиза. В организме животных до 90% липидов, поступающих с пищей, приходится на долю жиров. Переваривание жиров происходит в тонком кишечнике. Предварительно нерастворимые в воде жиры эмульгируются. Эмульгирование происходит под действием солей желчных кислот, которые попадают с желчью в просвет 12-перстной кишки. Желчные кислоты действуют как детергенты, располагаясь на поверхности капель жира и снижая поверхностное натяжение. В результате крупные капли жира распадаются на множество мелких, т.е. происходит эмульгирование. Из крупной капли жира образуется 1012 мелких капель.

Гидролиз жиров осуществляется панкреатической липазой. Панкреатическая липаза выделяется в полость тонкой кишки из поджелудочной железы (ПЖЖ) в виде неактивной пролипазы. Превращение в активную липазу происходит при участии желчных кислот и еще одного белка панкреатического сока - колипазы. Этот фермент, также секретируемый в виде зимогена, активируется при гидролизе трипсином специфических пептидных связей. Активная колипаза образует с липазой комплекс в молярном отношении 1:1 за счет формирования двух ионных связей Lys-Glu и Asp-Arg.

Колипаза своим гидрофобным доменом связывается с эмульгированным жиром. Другая часть молекулы колипазы способствует формированию такой конформации панкреатической липазы, при которой активный центр фермента максимально приближен к молекуле жира, поэтому скорость гидролиза жира резко возрастает (рис.21.2).

 

 

Рис.21.2. Взаимодействие неактивной панкреатической липазы, смешанной мицеллы и колипазы

 

Панкреатическая липаза гидролизует жиры преимущественно в 1 и 3 позициях (внешние сложноэфирные связи), поэтому основными продуктами гидролиза являются свободные ЖК и β-моноацилглицерол (2-моноацилглицерол, 2-МАГ). Молекулы 2-МАГ также обладают детергентными свойствами и способствуют эмульгированию жира.

 

 

β-Моноацилглицеролы всасываются стенкой кишечника и либо участвуют в ресинтезе триацилглицеролов уже в кишечной стенке, либо распадаются до глицерола и высшей жирной кислоты под действием неспецифических эстераз.

 

На скорость катализируемого липазой гидролиза триацилглицеролов не оказывает существенного влияния ни степень ненасыщенности жирной кислоты, ни длина ее цепи (от С12 до С18).

У растений в семенах и вегетативных органах присутствуют липазы, специфичность которых не выявлена. В дрожжевых грибках найдена липаза, способная отщеплять жирную кислоту как из α-, так и β-позиции.

Общепринято деление липаз на простые липазы, катализирующие гидролиз свободных триацилглицеролов, и липопротеинлипазы, гидролизирющие связанные с белками липиды.

Глицерофосфолипиды расщепляются под действием фосфолипаз. Существует четыре типа этих ферментов: фосфолипаза А1, А2, С и D. Фосфолипаза А1 отщепляет остаток жирной кислоты у С1 атома. Фосфолипаза А2 расщепляет β-сложноэфирную связь, фосфолипаза С отщепляет полярную головку вместе с остатком фосфорной кислоты, при этом продуктами гидролиза являются 1,2-диацилглицерол и фосфохолин. Фосфолипаза D, встречающаяся главным образом у растений, катализирует отщепление от фосфолипида полярной группы (азотистого основания) с образованием в качестве продукта фосфатидной кислоты (рис.21.3):

 

 

Рис.21.3. Расщепление сложноэфирных связей фосфолипазами

 

Фосфолипаза А2 (ФЛА2) гидролизует глицерофосфолипиды с образованием лизофосфолипидов. Лизофосфолипиды – эффективные эмульгаторы жира. Они, в свою очередь, под действием лизофосфолипазы, гидролизующей сложноэфирную связь у С1 атома, расщепляются на жирную кислоту и глицерофосфохолин, который хорошо растворяется в водной среде и всасывается из кишечника в кровь. Глицерофосфохолин также может расщепляться гидролазой до глицерол-3-фосфата и холина. ФЛА2 – неактивна, активируется путем частичного протеолиза, нуждается в Са2+.

Холестерол в пищевых продуктах содержится частично в свободном (неэстерифицированном) виде, частично в виде эфиров с жирными кислотами. Эфиры холестерола гидролизуются под действием особого фермента холестеролэстеразы, который синтезируется в ПЖЖ и секретируется в кишечник. Продуктами гидролиза являются свободный холестерол (ХС) и ЖК. Активность фермента проявляется в присутствии желчных кислот.

 

 

 

+ Н2О → СН3(СН2)14СООН

 

+

холестерол

 

Рис. 21.4. Гидролиз пальмитохолестерида холестеролэстеразой

 





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 1152 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

2459 - | 2138 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.