Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Цитохромы электронтранспортной цепи




Цитохромы представляют собой группу небольших гeмопротеинов, у которых в отличие от гемоглобина и миоглобина, атом железа, входящий в состав их гема, легко подвергается обратимому окислению и восстановлению. Это свойство придает им чрезвычайно важное биологическое значение при переносе электронов. Цитохромы содержатся во всех животных, растениях и аэробных микроорганизмах. На основании природы простетической группы и способа ее связи с белками цитохромы можно разделить на четыре главные группы: а, b, с и d.

Хлорофиллы

 

Хлорофиллы, связанные с белками (от гр. Chloros ‒ зелёноватый + phyllon ‒ лист), ‒ зелёные пигменты растений. Основу молекулы хлорофилла составляет магний-порфириновый комплекс, окружённый заместителями – фитолом, придающим молекуле хлорофилла способность встраиваться в липидный слой мембраны клетки. Существует несколько типов хлорофиллов, отличающихся системой сопряжённых связей и заместителями. Высшие растения и водоросли в качестве основного пигмента содержат хлорофилл a, в качестве сопровождающих дополнительных ‒ хлорофилл b (высшие растения и зелёные водоросли), хлорофилл c (бурые и диатомовые водоросли), хлорофилл d (красные водоросли).

Флавопротеины

Флавопротеины содержат прочно связанные с белком простетические группы, представленные изоаллоксазиновыми производными – окисленными флавинмононуклеотидами (FMN) и флавинадениндинуклеотидами (FAD). Флавопротеины входят в состав оксидоредуктаз. Некоторые флавопротеины содержат ионы металлов. Представителями флавопротеинов, содержащими также негемовое железо, являются ксантиноксидаза, сукцинатдегидрогеназа.


ЛЕКЦИЯ 9

СЛОЖНЫЕ БЕЛКИ

 

Гликопротеины

 

Гликопротеины составляют большую группу сложных белков, содержащих в качестве простетической части углеводы и/или их производные, ковалентно-связанные с белком. При гидролизе гликопротеинов в углеводном компоненте обнаруживаются такие моносахариды, как D-галактоза, D-манноза, D-глюкоза, N-ацетилгалактозамин, N-ацетилглюкозамин и др.

Небольшие олигосахаридные группы могут присоединяться к белкам через O-гликозидную связь к гидроксилам остатков серина и треонина (рис. 9.1).

 

 

Рис.9.1. О-гликозидная связь в гликопротеинах

 

В ряде белков встречаются N-гликозидные связи с амидными группами Asn, реже Gln или NH2 группами Lys и Arg (рис.9.2).

 

 

Рис. 9.2. N-гликозидная связь в гликопротеинах

 

По соотношению белковой и углеводной частей гликопротеины подразделяются на нейтральные и кислые. В нейтральных гликопротеинах углеводная часть может составлять от 3% до 15%, а у некоторых гликопротеинов 40%. К нейтральным гликопротеинам относятся яичный белок (овальбумин), гликопротеины плазмы крови (трансферрин, церуллоплазмин), белок щитовидной железы (тиреоглобулин).

В состав кислых гликопротеинов помимо амино и моносахаров входит уроновая кислота, которая имеет большое биологическое значение, принимая участие в обезвреживании билирубина и ряда ксенобиотиков, в том числе лекарственных средств. Важнейшими кислыми гликопротеинами являются гликопротеины, содержащие в составе гиалуроновые кислоты. Повторяющейся структурной единицей гиалуроновой кислоты служит дисахарид, состоящий из ацетилглюкозамина и глюкуроновой кислоты, соединенных β(1→3)-глюкозидной связью:

 

 

Отдельные дисахаридные остатки соединяются в цепь β(1→4)-глюкозидными связями. В глюкуроновой кислоте карбоксильная группа находится в ионизированном состоянии, поэтому гиалуроновая кислота является чрезвычайно гидрофильным соединением, удерживающим большое количество воды. Её растворы обладают высокой вязкостью.

Важным углеводным компонентом гликопротеинов является также хондроитинсерная кислота или хондроитинсульфат-полимер, состоящий из ацетилгалактозамина, этерифицированного серной кислотой и глюкуроновой кислоты. Ацетилгалактозамин и глюкуроновая кислота соединяются между собой β(1→3) глюкозидной связью:

 

 

хондроитин -4-сульфат

Хондроитинсульфаты составляют целые семейства (А, В, С), содержащиеся в качестве компонентов соединительной ткани. Их структуры различаются по положению сульфатных остатков, соотношению глюкуроновой кислоты, N-ацетил-D-галактозамина и сульфата. В хрящевой ткани хондроитинсульфаты связываются с особым белком в виде хондромукоида; в костной ткани образуют осцемукоид. Хондроитинсульфаты относятся к мукополисахаридам с молекулярной массой в пределах от 50 до 100 кДа.

Муцины – мукополисахариды, полужидкие слизеобразные вещества, вырабатываемые пищеварительными железами, которые в комплексе с особыми белками играют важную роль в предохранении стенок пищеварительного тракта от механических, химических повреждений и самопереваривания. В состав мукоитинсульфата входит дисахаридный остаток, построенный из маннозамина и глюкуроновой кислоты, причем маннозамин этерифицирован двумя, тремя остатками серной кислоты.

Из природных источников животного и растительного происхождения выделены различные гликопротеины, выполняющие разнообразные функции: защитные (антитела, иммуноглобулины); регуляторные (фолликулстимулирующий, соматотропный гормоны); транспортные (трансферрин, церуллоплазмин, тиреоглобулин); гомеостатические (гепарин); структурные (гликофорин, муреин); образуюшие рецепторы и др.

Особую группу гликопротеинов составляют протеогликаны, в составе которых углеводный компонент преобладает и на его долю приходится от 80% и выше. Более того, эти вещества по своим свойствам более сходны с полисахаридами, чем с белками. Все они содержат глюкозамины или галактозамины.

В межклеточном матриксе содержатся крупные протеогликаны – агрекан и версикан. Кроме них в межклеточном веществе имеется целый набор так называемых малых протеогликанов. Агрекан – основной протеогликан хрящевого матрикса, составляющего 10% исходной ткани и 25% сухого хрящевого матрикса. Это очень крупная молекула, в которой к одной полипептидной цепи присоединены до 100 цепей хондроитинсульфатов и около 30 цепей кератинсульфатов. По форме молекула агрекана напоминает «ершик для мытья бутылок». В хрящевой ткани молекулы агрекана собираются в агрегаты с гиалуроновой кислотой и небольшим связывающим белком.

Оба компонента присоединяются к агрекану нековалентными связями в области определенного домена, взаимодействующего примерно с пятью дисахаридными единицами гиалуроновой кислоты. Далее этот комплекс стабилизируется связывающим белком.

Малые протеогликаны – протеогликаны с низкой молекулярной массой. Они содержатся в хрящях, сухожилиях, связках, менисках, коже и других видах соединительной ткани, имеют небольшой коровый белок, к которому присоединены одна или более цепи глизоамингликанов. Наиболее изучены декорин, бигликан, фибромодулин, люмикан, перликан. Коровые белки бигликана и декорина похожи по размерам и структуре. Они имеют несколько тандемных повторов, богатых лейцином, которые образуют α-спирали и β-структуры. На N- и C-концах этих белков расположены домены, содержащие S-S-связи.

Малые протеогликаны являются мультифункциональными макромолекулами. Они могут связываться с другими компонентами соединительной ткани и оказывать влияние на их строение и функции. Например, декорин и фибромодулин присоединяются к фибриллам коллагена второго типа и ограничивают их диаметр, препятствуя образованию толстых фибрилл. Присоединение декорина и бигликана к фибронектину подавляет клеточную адгезию, а присоединение фактора роста опухолей β снижает его митогенную активность. Малые протеогликаны играют важную роль в развитии и регенерации соединительной ткани.

 

Фосфопротеины

Простетической группой фосфопротеинов является ортофосфорная кислота. Остатки фосфорной кислоты присоединяются к молекуле белка сложноэфирными связями по месту гидроксильных групп оксиаминокислот – серина и треонина. Чаще всего в фосфопротеинах преобладает именно соединения фосфорной кислоты с серином.

 

 

Остаток фосфосерина Остаток фосфотреонина

 

В фосфопротеинах выявлены пирофосфатные и фосфодиэфирные остатки, наличие которых указывает на то, что пептидные цепи могут быть соединены не только дисульфидными мостиками,но и остатками фосфорной кислоты.

С биологической точки зрения фосфопротеины являются питательными веществами необходимыми для растущего организма. Прежде всего фосфопротеины вместе с необходимым пулом аминокислот участвуют в формирование скелета. Типичными представителями этих сложных белков являются казеины, существующие в нескольких формах и различающиеся между собой по содержанию фосфата и аминокислотным составом. Несколько различных фосфопротеинов найдено среди белков яиц: овальбумин – фосфопротеин яичного белка, вителленин и фосвитин, выделенные из яичного желтка. Ихтулин, обнаруженный в икре рыб, играет немаловажную роль в развитии эмбриона рыб. Пепсин, являясь протеолитическим ферментом, относится к фосфопротеинам и содержит одну молекулу фосфорной кислоты на одну молекулу этого белка. Фосфатная группа присоединяется к радикалу серина, находящемуся в пептидной цепи рядом с глутаминовой кислотой. Фосфопротеинами являются также ферменты фосфоглюкомутаза и фосфорилаза.

 

Липопротеины

Липопротеины – высокомолекулярные структуры, большинство из которых являются транспортной формой липидов. Липопротеины состоят из белков и липидов (рис. 9.3). В отличие от липидов, липопротеины растворимы в воде и нерастворимы в органических растворителях. Прочность связи белков с липидами в липопротеинах неодинакова и зависит от того, есть ли в молекуле липида ионизированные группы атомов. Липопротеины широко представлены в плазме крови, нервной ткани, молоке, участвуют в построении плазматических мембран. Все типы липопротеинов имеют сходное строение: гидрофобное ядро и гидрофильный слой на поверхности. Гидрофильный слой образован белками, которые называют апопротеинами, и амфифильными молекулами липидов – фосфолипидов и холестерина. Гидрофильные группы этих молекул ориентированы в водную фазу, а гидрофобные части – к гидрофобному ядру липопротеина, в котором находятся транспортируемые липиды.

 

 

Рис. 9.3. Схема строения липопротеиновой частицы: НЭСХ – неэтерифицированный (свободный) холестерин, ЭХС – этерифицированный холестерин, ТГ – триацилглицеролы, ФЛ – фосфолипиды

 

Некоторые апопротеины интегральны и не могут быть отделены от липопротеина, а другие могут свободно переноситься от одного типа липопротеина к другому. В липопротеинах апопротеины выполняют несколько функций: формируют структуру липопротеина; взаимодействуют с рецепторами на поверхности клеток; определяют какими тканями будет захвачен липопротеин; служат ферментами или активаторами ферментов, действующих на липопротеин.

В организме синтезируются следующие липопротеины: хиломикроны (ХМ), липопротеины очень низкой плотности (ЛПОНП), липопротеины промежуточной плотности (ЛППП), липопротеины низкой плотности (ЛПНП), липопротеины высокой плотности (ЛПВП), см.табл. 9.1.

Таблица 9.1

Состав и некоторые характеристики липопротеинов плазмы крови

 

Типы липопротеинов Хиломикроны ЛПОНП ЛППП ЛПНП ЛПВП
Белки, %          
ФЛ, %          
ХС, %          
ЭХС, %          
ТАГ, %          
Функции Транспортирование липидов из клеток кишечника Транспортирование липидов, синтезируемых в печени Промежуточная форма превращения ЛПОНП в ЛПНП под действием фермента ЛП-липазы Транспортироние холестерина в ткани Удаление избытка холестерина из клеток и других липопротеинов  
Место образования Эпителий тонкого кишечника Клетки печени Кровь Кровь Клетки печени, ЛПВП-предшественники
Плотность, г/мл 0,92-0,98 0,96-1,00 1,00-1,06 1,06-1,21
Диаметр частиц, нМ Больше 120 30-100 21-100 7-15
Основные аполипопротеины В 48,С 2, Е В-100, С 2, Е В-100, Е В-100 А-1, С-2, Е

 

Функции апопротеинов следующие: В-48 – основной белок хиломикронов; В-100–основной белок ЛПОНП, ЛПНП, ЛППП, взаимодействующий с рецепторами ЛПНП; С-2 – активатор ЛП-липазы, переносится с ЛПВП на ХМ и ЛПОНП в крови; Е – взаимодействует с рецепторами ЛПНП; А – активатор фермента лецитин-холестеринтрансферазы (ЛХАТ).

Липопротеины хорошо растворимы в крови, не слипаются, т. к. имеют небольшой размер и отрицательный заряд на поверхности. Некоторые липопротеины легко проникают через стенки капилляров кровеносных сосудов и доставляют липиды к клеткам.

Хиломикроны, имеющие большие размеры, не могут преодолеть капилляры и поэтому сначала попадают в лимфатическую систему, а потом через главный грудной проток вливаются в кровь вместе с лимфой.

 

Металлопротеины

Сложные белки могут в качестве небелковой части могут содержать

металлы (такие, как медь, железо, магний, цинк, селен и др.). Объединение белковой части с металлом, как правило, происходит посредством коплексной связи, без каких либо специальных группировок атомов. К числу металлопротеинов относятся около сотни ферментов, например, полифенолоксидаза, цитохромоксидаза (содержат Cu), карбоангидраза, алкогольдегидрогеназа, карбоксипептидаза, ДНК-и РНК-полимеразы (содержат Zn), цитохромы, каталаза, пероксидаза содержат Fe. Важная функция металлопротеинов связана с транспортированием металлов и/или их накоплением. К транспортным белкам относится металлопротеин трансферрин. Он синтезируется в печени и способен связывать только окисленное железо. Поступающее в кровь железо окисляется с помощью феррооксидазы, являющейся медь-содержащим белком плазмы крови церулоплазмином. Одна молекула трансферрина может связать один или два иона Fe, но одновременно с анионом CO c образованием комплекса трансферрин-2. В норме трансферрин крови насыщен железом примерно на 33%.

Ферритин – олигомерный белок, состоящий из тяжелых и легких полипептидных цепей, составляющих 24 протомера. Это пример металлопротеина, депонирующего железо. Ферритин может находиться в нескольких изоформах в зависимости от разного набора протомеров. По своей архитертуре ферритин – полая сфера, внутри которой может содержаться от 3000 до 45000 ионов трехвалентного железа. Тяжелые цепи ферритина окисляют двухвалентное железо с образованием трехвалентного. Ферритин содержится почти во всех тканях, но в наибольшем количестве в печени, селезенке и костном мозге.

Инсулин – гормон, вырабатываемый β-клетками поджелудочной железы и синтезирующийся в виде неактивного предшественника – препроинсулина, в ходе последовательного протеолиза в конечном итоге расщепляется до инсулина и С-пептида. Инсулин и С-пептиды в эквимолярных количествах включаются в секреторные гранулы. В гранулах инсулин соединяется с цинком, образуя димеры и гексамеры (рис. 9.2).

 

 

Рис.9.2. Гексамерный комплекс инсулина с Zn2+

 

Особое внимание необходимо уделить железо-серным белкам, содержащим негемовое железо. FeS-белки входят в состав электроннотранспортной цепи в комплекс I (содержащим кроме FMN не менее пяти железо-серных белков) и комплекс III, включающий один FeS-белок, цитохром с1 и две разные формы цитохрома b.

Атомы железа в FeS-белках собраны в несколько групп, т.н. железо-серных центров. Известны 3 типа FeS-центров – FeS, Fe2S2, Fe4S4, в которых атом железа связан с атомом серы остатков цистеина или неорганической серы (рис.9.3).

 

Рис.9.3. Железо-серные центы ферритина: Fe2S2-центр (слева), Fe4S4-центр (справа)

 

FeS-центр – атом железа связан координационными связями с четырьмя атомами серы, принадлежащими четырем остаткам цистеина в белке; Fe2S-центр ‒ каждый из двух атомов железа связан координационными связями с двумя атомами неорганической серы и двумя остатками цистеина в белке; Fe4S4-центр ‒ (четыре атома железа), каждый из четырёх атомов железа связан с четырьмя атомами серы и четырьмя остатками цистеина в белке.


ЛЕКЦИЯ 10





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 1060 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2205 - | 2093 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.