Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Упражнение №1. Определение временных параметров ЭКГ и величины биопотенциалов зубцов ЭКГ




1. Ознакомиться с устройством электрокардиографа. Заземлить прибор.

2. Марлевые салфетки, смоченные 5–10 %-ным раствором хлористого натрия, наложить на пластинчатые электроды и зафиксировать их на теле человека резиновым бинтом.

3. После наложения электродов подсоединить к ним разноцветные штепсели «проводов пациента» в следующем порядке:

красный – на правую руку;

желтый – на левую руку;

зеленый – на левую ногу;

коричневый – на правую ногу (заземление).

4. Писчик установить по средней линии бумажной ленты.

5. Установить скорость движения бумажной ленты .

6. Установить чувствительность и произвести запись калибровочного сигнала.

7. Передвигая ручку коммутатора, записывать ЭКГ вo втором стандартном отведении.

8. Вклеить в конспект ЭКГ, обозначить зубцы, интервалы, сегменты.

9. По полученной ЭКГ определить длину l (мм) зубцов, сегментов и интервалов. По формуле рассчитать длительность зубцов, сегментов и интервалов.

10. Найти высоту h (мм) зубцов P, R и T. Рассчитать величину соответствующих биопотенциалов по формуле: .

 

 

Полученные данные занести в таблицу.

Зубцы, сегменты, интервалы. l (мм) (с) h (мм)
Р R Т        
PQ ST TP      
P-Q Q-T S-T R-R      

Контрольные вопросы

1. Основные характеристики электрического поля.

2. Модель эквивалентного токового электрического генератора клетки, находящейся в объемной электропроводящей среде.

3. Принцип суперпозиции.

4. Потенциал электрического поля, создаваемого униполем и диполем.

5. Понятие о мультиполе.

6. Дипольный эквивалентный электрический генератор сердца.

7. Теория отведений Эйнтховена.

8. ЭКГ здорового человека. Зубцы, сегменты и интервалы ЭКГ.

9. Блок-схема электрокардиографа. Техника безопасности при работе с электрокардиографом.

10. Методика анализа интервальных и амплитудных параметров электрокардиограммы.

Тестовые задания

1. Сила тока в эквивалентном токовом электрическом генераторе клетки, находящейся в объемной электропроводящей среде, определяется по формуле:

а) ; б) ;

в) ; г) ;

д) .

2. Окончите утверждение: «Сила тока в эквивалентном токовом эл. генераторе клетки и суммарный ток во внешней среде …….»:

а) не зависят от ЭДС генератора;

б) не зависят от внутреннего сопротивления клетки;

в) прямо пропорциональны внутреннему сопротивлению клетки;

г) не зависят от сопротивления внешней среды;

д) зависят от сопротивления внешней среды.

3. Основной характеристикой токового диполя является электрический дипольный момент, определяемый по формуле:

а) ; б) ;

в) ; г) .

д) ;

4. Униполь – это:

а) система, состоящая из двух зарядов;

б) система, состоящая из трех зарядов;

в) отдельный полюс диполя;

г) система, состоящая из двух положительных зарядов.

 

 

5. Потенциал электрического поля, создаваемого униполем, определяется по формуле: ….

где r - удельное сопротивление среды;

r – радиус сферы униполя;

I – измеряемый ток униполя:

а) ; б) ;

в) ; г) ;

д) .

6. Потенциал электрического поля, создаваемого диполем в точке А, определяется по формуле.

 
 

 

 


а) ; б) ;

в) ; г) ;

д) .

 

 

7. Осуществите подстановку в формулу потенциала электрического поля, создаваемого диполем:

:

а) ; б) ; в) ;

г) ; д) .

8. Потенциал электрического поля, создаваемого диполем в определенной точке, согласно принципe суперпозиции, определяется формулой:

а) ; б) ; в) ;

г) ; д) .

9. Число зарядов мультиполя определяется выражением:

а) ; б) ; в) ;

г) ; д) .

10. Мультиполем нулевого порядка является:

а) диполь; б) униполь;

в) квадраполь; г) октуполь.

11. Мультиполем первого порядка является:

а) диполь б) униполь

в) квадраполь г) октуполь.

 

12. Мультиполем второго порядка является:

а) диполь; б) униполь;

в) квадраполь; г) октуполь.

 

13. Мультиполем третьего порядка является:

а) диполь; б) униполь;

в) квадраполь; г) октуполь.

 

14. Потенциал электрического поля, создаваемого мультиполем, убывает пропорционально:

а) ; б). ; в) ;

г) ; д) .

15. Укажите формулу потенциала электрического поля сердца:

а) ; б) ; в) ;

г) ; д) .

16. Укажите формулу эквивалентного диполя сердца:

а) ; б) ; в) ;

г) ; д) .

 

 

17. Эквивалентным электрическим генератором сердца является модель, в которой электрическая активность миокарда заменяется действием:

а) одного точечного диполя;

б) мультиполя нулевого порядка;

в) мультиполя второго порядка;

г) мультиполя третьего порядка;

д) точечного квадраполя.

 

18. Максимальное значение модуля интегрального электрического вектора сердца составляет:

а) ; б) ; в) ;

г) ; д) .

 

19. Пространственная ВЭКГ представляет собой траекторию конца электрического вектора сердца …

а) в трехмерном пространстве за одну секунду;

б) в двухмерном пространстве;

в) в трехмерном пространстве в течение кардиоцикла;

г) на плоскости в течении кардиоцикла;

д) на плоскости за одну минуту.

 

20. Плоские ВЭКГ – это кривые, описываемые концом проекции вектора дипольного момента эквивалентного диполя …

а) в пространстве в течение кардиоцикла;

б) на фронтальную плоскость за одну минуту;

в) на сагиттальную плоскость за одну минуту;

г) на какую-либо плоскость в течение кардиоцикла;

д) на какое – либо отведение за одну минуту.

21. Электрограммой называется:

 

а) зависимость от времени разности потенциалов, возникающая при функционировании органа или ткани;

б) зависимость от времени импеданса органа или ткани;

г) зависимость от времени концентрационного градиента ионов К, Na, Cl;

д) зависимость разности потенциалов от электрической емкости органа или ткани.

22. Пространственная ВЭКГ представляет собой:

 

а) временную проекцию конца интегрального электрического вектора сердца на линию соответствующего отведения;

б) траекторию конца электрического вектора сердца в двухмерном пространстве в течение кардиоцикла;

в) траекторию конца электрического вектора сердца в трехмерном пространстве в течение кардиоцикла;

г) траекторию конца электрического вектора сердца в двухмерном пространстве в течение систолы;

д) траекторию конца электрического вектора сердца в двухмерном пространстве в течение диастолы;

 

23. Укажите, сколько электродов использовал в теории ВЭКГ Эйнтховен:

а) 5; б) 2; в) 7; г) 3; д) 4.

 

24. По теории Эйнтховена, точка приложения интегрального электрического вектора сердца соответствует:

а) одной из вершин треугольника Эйнтховена;

б) левой руке;

в) правой руке;

г) левому желудочку сердца;

д) нервно – мышечному узлу сердца.

 

25. Укажите треугольник Эйнтховена и его отведения:

 

 
 

 

 


 

 

а

 

б

 

 

в

 

26. Укажите блок-схему электрокардиографа.

а

 

б

 

в

 

г

 

27. Периодичность колебаний ЭКГ связана с частотой пульса и находится в норме в пределах:

а) ; б) ; в) ;

г) ; д) .

 

28. Наибольшее значение напряжение ЭКГ человека имеет порядок:

а) несколько вольт;

б) несколько милливольт;

в) десятки милливольт;

г) сотни милливольт;

д) десятки вольт.

 

29. При расчете величины биопотенциалов, соответствующих зубцам на полученной электрокардиограмме, учитываются следующие параметры:

а) скорость и продолжительность записи ЭКГ;

б) скорость записи ЭКГ;

в) чувствительность электрокардиографа и амплитуда зубца;

г) только чувствительность электрокардиографа.

 

30. Зубцы Q и S на стандартной электрокардиограмме соответствуют:

а) нулевым биопотенциалам;

б) положительным биопотенциалам;

в) переменным по знаку биопотенциалам;

г) отрицательным биопотенциалам;

д) отсутствию биопотенциалов в сердечной мышце.

 

31. Горизонтальные участки на стандартной электрокардиограмме объясняются:

а) отсутствием биопотенциалов в сердечной мышце;

б) поляризацией сердечной мышцы;

в) компенсацией положительных и отрицательных биопотенциалов,

возникающих в сердечной мышце.

 

32. Укажите модель эквивалентного токового электрического генератора клетки, находящейся в объемной электропроводящей среде: где R – внутриклеточное сопротивление току;

R0 – сопротивление внешней среды;

e - ЭДС генератора;

а, b – полюса генератора.

 

а б

 

в г

 

Лабораторная работа № 6





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 1053 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2514 - | 2362 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.