Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Образование комплексного чертежа (эпюра)




Для удобства пользования полученными изображениями от пространственной системы плоскостей перейдем к плоскостной.

Для этого:

1. Применим способ вращения плоскости p1 вокруг оси Х до совмещения с плоскостью p2 (рис. 2.7)

2. Совмещаем плоскости p1 и p2 в одну плоскость чертежа (рис. 2.8)

Рис. 2.7 Рис. 2.8

Проекции А1 и А2 располагаются на одной линии связи перпендикулярной оси Х. Эта линия называется линией проекционной связи (рис. 2.9).

Рис. 2.9

Так как плоскость проекций считается бесконечной в пространстве, то границы плоскости p1, p2 можно не изображать (рис. 2.10).

Рис. 2.10

В результате совмещения плоскостей p1 и p2 получается комплексный чертеж или эпюр (от франц. epure чертеж), т.е. чертеж в системе p1 и p2 или в системе двух плоскостей проекций. Заменив наглядное изображение эпюром, мы утратили пространственную картину расположения плоскостей проекций и точки. Но эпюр обеспечивает точность и удобоизмеряемость изображений при значительной простоте построений. Чтобы представить по эпюру пространственную картину, требуется работа воображения: например, по рис. 2.11 надо представить картину, изображенную на рис. 2.12.

При наличии на комплексном чертеже оси проекций по проекциям А1 и А2 можно установить положение точки А относительно p1 и p2 (см. рис. 2.5 и 2.6). Сравнивая рис. 2.11 и 2.12 нетрудно установить, что отрезок А2 АХ – расстояние от точки А до плоскости p1, а отрезок А1АХ – расстояние от точки А до p2. Расположение А2 выше оси проекций означает, что точка А расположена над плоскостью p1. Если А1 на эпюре расположена ниже оси проекций, то точка А находится перед плоскостью p2. Таким образом, горизонтальная проекция геометрического образа определяет его положение относительно фронтальной плоскости проекций p2, а фронтальная проекция геометрического образа – относительно горизонтальной плоскости проекций p1.

Рис. 2.11 Рис. 2.12

 

§ 4. Характеристика положения точки в системе p 1 и p 2

Точка, заданная в пространстве, может иметь различные положения относительно плоскостей проекций (рис. 2.13).

Рис. 2.13

Рассмотрим возможные варианты расположения точки в пространстве первой четверти:

1. Точка расположена в пространстве I четверти на любом расстоянии от оси Х и плоскостей p 1p 2, например точки А, В (такие точки называются точками общего положения) (рис. 2.14 и рис. 2.15).

Рис. 2.14 Рис. 2.15

2. Точка С принадлежит плоскости p2, точка D – плоскости p1 (рис. 2.16 и рис. 2.17)

Рис. 2.16 Рис. 2.17

3. Точка K принадлежит одновременно и плоскости p1 и p2, то есть принадлежит оси Х (рис. 2.18):

Рис. 2.18

На основании вышеизложенного можно сделать следующий вывод:

1. Если точка расположена в пространстве I четверти, то ее проекция А2 расположена выше оси Х, а А1 – ниже оси Х; А2А1 – лежат на одном перпендикуляре (линии связи) к оси Х (рис. 2.14).

2. Если точка принадлежит плоскости p2, то ее проекция С2 С (совпадает с самой точкой С) а проекция С1 Х (принадлежит оси Х) и совпадает с СХ: С1 СХ.

3. Если точка принадлежит плоскости p1, то ее проекция D1 на эту плоскость совпадает с самой точкой D D1, а проекция D2 принадлежит оси Х и совпадает с DХ: D2 DХ.

4. Если точка принадлежит оси Х, то все ее проекции совпадают и принадлежат оси Х: К К1 К2 КХ.

Задание:

1. Дать характеристику положения точек в пространстве I четверти (рис. 2.19).

Рис. 2.19

2. Построить наглядное изображение и комплексный чертеж точки по описанию:

а) точка С расположена в I четверти, и равноудалена от плоскостей p1 и p2.

б) точка М принадлежит плоскости p2.

в) точка К расположена в первой четверти, и ее расстояние до p1 в два раза больше, чем до плоскости p2.

г) точка L принадлежит оси Х.

3. Построить комплексный чертеж точки по описанию:

а) точка Р расположена в I четверти, и ее расстояние от плоскости p2 больше, чем от плоскости p1.

б) точка А расположена в I четверти и ее расстояние до плоскости p1 в 3 раза больше, чем до плоскости p2.

в) точка B расположена в I четверти, и ее расстояние до плоскости p1=0.

4. Сравнить положение точек относительно плоскостей проекций p1 и p2 и между собой. Сравнение ведется по характеристикам или признакам. Для точек эти характеристики есть расстояние до плоскостей p1; p2 (рис. 2.20).

Рис. 2.20

Применение вышеизложенной теории при построении изображений точки может быть осуществлено различными способами:

  • словами (вербальное);
  • графически (чертежи);
  • наглядное изображение (объемное);
  • плоскостное (комплексный чертеж).

Умение переводить информацию с одного способа на другой способствует развитию пространственного мышления, т.е. с вербального в наглядное (объемное), а затем в плоскостное, и наоборот.

Рассмотрим это на примерах (табл. 2.1 и табл. 2.2).

Таблица 2.1

Пример изображения точек
в системе двух плоскостей проекций

Четверть пространства Наглядное изображение Комплексный чертеж Характерные признаки
I Фронтальная проекция точки А выше оси Х, горизонтальная проекция точки А ниже оси X
II Фронтальная и горизонтальная проекции точки B выше оси Х
III Фронтальная проекция точки С ниже оси Х, горизонтальная проекция точки C выше оси X
IV Фронтальная и горизонтальная проекции точки D ниже оси Х

Таблица 2.2

Пример изображения точек, принадлежащих плоскостям p 1 и p 2

Положение точки Наглядное изображение Комплексный чертеж Характерные признаки
Точка А принадлежит плоскости p 1 А1 – ниже оси Х, А2 – на оси X
Точка B принадлежит плоскости p 1 B1 – выше оси X, B2 – на оси X
Точка С принадлежит плоскости p 2 С2 – выше оси X, С1 – на оси Х
Точка D принадлежит плоскости p 2 D1 – на оси X, D2 – ниже оси X
Точка Е принадлежит оси X E1 совпадает с E2 и принадлежит оси X

Задача № 1.

Построить комплексный чертеж точки А, если:

1. точка расположена во II четверти и равноудалена от плоскостей p1 и p2.

2. точка расположена в III четверти, и ее расстояние до плоскости p1 в два раза больше, чем до плоскости p2.

3. точка расположена в IV четверти, и ее расстояние до плоскости p1 больше, чем до плоскости p2.

Задача № 2.

Определить, в каких четвертях расположены точки (рис. 2.21).

Рис. 2.21

Задача № 3.

1. Построить наглядное изображение точек в четвертях:

а) А – общего положения в III четверти;

б) В – общего положения в IV четверти;

в) С – во второй четверти, если ее расстояние от p1 равно 0;

г) D – в I четверти, если ее расстояние от p2 равно 0.

Задача № 4.

Построить комплексный чертеж точек А, В, С, D (см. задачу 3).





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 1298 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Два самых важных дня в твоей жизни: день, когда ты появился на свет, и день, когда понял, зачем. © Марк Твен
==> читать все изречения...

2256 - | 2079 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.