Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Скалярное произведение двух векторов




Скалярным произведением векторов = (х 1, х 2, …, хп) и = (у 1,
у 2, …, уп) называется число , равное сумме произведений соответствующих координат векторов и :

.

Скалярное произведение векторов обладает следующими свойствами:

1. = .

2. , .

3. .

4. 0, если , и , если .

Линейная зависимость и линейная независимость векторов

Линейной комбинацией векторов называется вектор вида

, (1)

где , .

Пример. Пусть = (2;1;0), = (1;0;1), = (0;1;2). Вектор = (0;4;4) — линейная комбинация векторов , так как = 1· –2 · + 3 · .

В случае выполнения равенства (1) говорят, что вектор линейно выражается через векторы , или разлагается по этим
векторам.

 

Система ненулевых векторов вида

(2)

называется линейно зависимой, если существуют числа , , не все равные нулю, такие, что

. (3)

Если же равенство (3) для данной системы векторов возможно лишь при , то эта система векторов называется линейно независимой.

Базис и ранг системы векторов

Пусть дана система векторов (2).

Максимальной линейно независимой подсистемой системы векторов (2) называется такой частичный набор векторов этой системы, который удовлетворяет следующим условиям:

1. Векторы этого набора линейно независимы.

2. Любой вектор системы (2) линейно выражается через векторы этого набора.

Максимальная линейно независимая подсистема системы векто-
ров (2) называется ее базисом.

Будем называть рангом системы векторов число векторов ее базиса.

Система векторов называется базисом пространства Rn, если:

1. Векторы этой системы линейно независимы.

2. Всякий вектор из Rn линейно выражается через векторы данной системы.

Матрицы

Прямоугольная таблица чисел вида

,

состоящая из m строк и n столбцов, называется матрицей .

Здесь aij — действительные числа (i = 1, 2, …, m, j = 1, 2,…, n), которые называются элементами матрицы. Индекс i указывает на номер строки, а индекс j — номер столбца. На их пересечении находится элемент aij.

Матрица, все элементы которой являются нулями, называется нулевой.

В случае, когда т = п (число строк равно числу столбцов), матрица А называется квадратной матрицей n - го порядка:

.

Главной диагональю квадратной матрицы называется ее диагональ, составленная из элементов a 11, a 22,…, ann.

Квадратная матрица называется единичной, если элементы ее главной диагонали равны единице, а все остальные элементы — нулю.

Очевидно, строки матрицы An ´ m образуют систему n- мерных векторов .

Рангом матрицы назовем ранг этой системы .

Следующие преобразования матрицы А назовем элементарными:

1. Перестановка местами двух ее строк (столбцов).

2. Умножение всех элементов строки (столбца) матрицы на одно и то же число, отличное от нуля.

3. Прибавление к элементам некоторой строки (столбца) соответствующих элементов другой строки (столбца), умноженных на одно и тоже число.

Теорема. При элементарных преобразованиях ранг матрицы не изменяется.

Для практического вычисления ранга матрицы A ее удобно при помощи элементарных преобразований приводить к виду

.

Тогда ранг матрицы А равен числу единиц на диагонали матрицы A', т. е. числу r.

Действия над матрицами

Суммой двух матриц Ап ´ т = (аij) и Bп ´ т = (bij) называется такая третья матрица Сп ´ т = (сij), что сij = аij + bij.

Произведением матрицы Ап ´ т = (аij) на число называется такая матрица Bп ´ т = · Ап ´ т = (dij), что dij = · аij.

Пример. Если , , то С = 2 А – 3 В = = = + =
= .

Произведением матриц Ап ´ т = (аij) и Bm ´ k = (bij) называется такая третья матрица Сп ´ k = (сij), что cij = аi 1 · b 1 j + аi 2 · b 2 j +…+ аim · bmj.

 

Пример. Если , , то C = A · B =
=
= .

 

Определители

Квадратной матрице А порядка п можно сопоставить число det A (или | A |, или ), называемое ее определителем, следующим образом:

1. Если п = 1, A = (a 11), тогда определитель первого порядка имеет вид

| A | = = | a 11| = a 11.

2. Если п = 2, , тогда определитель второго порядка вычисляется по формуле

.

3. Если п = 3, , то матрице третьего порядка соответствует определитель

Это выражение получается по правилу треугольников (правилу Саррюса). Его можно пояснить схемами, на которых элементы, входящие в одно произведение с указанным знаком, соединены отрезками (рис. 9).

 
Рис. 9
 

Пример.





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 504 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2222 - | 2164 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.