КОЛЕБАНИЯ И ВОЛНЫ. ЭЛЕМЕНТЫ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ
Кинематическое уравнение гармонических колебаний материальной точки
x = A cos(wt+j),
где х - смещение; А -амплитуда колебаний; w - угловая или циклическая частота; j - начальная фаза.
Скорость и ускорение материальной точки, совершающей гармонические колебания:
u = -Aw sin (wt+j); a = - Aw2 cos (wt+j).
Сложение гармонических колебаний одного направления и одинаковой частоты:
а) амплитуда результирующего колебания
б) начальная фаза результирующего колебания
Траектория точки, участвующей в двух взаимно перпендикулярных колебаниях,
x = A1 cos wt; y = A2 cos (wt+j);
а) если разность фаз j=0;
б) если разность фаз j=±p;
в) если разность фаз j=±p/2.
Уравнение плоской бегущей волны
где y - смещение любой из точек среды с координатой x в момент t;
u - скорость распространения колебаний в среде.
Связь разности фаз Dj колебаний с расстоянием Dxмежду точками среды, отсчитанным в направлении распространения колебаний;
где l - длина волны.
Основное уравнение динамики вращательного движения относительно неподвижной оси z
где Мz - результирующий момент внешних сил относительно оси z, действующих на тело; e - угловое ускорение; Jz - момент инерции относительно оси вращения.
Моменты инерции некоторых тел массой m относительно оси z, проходящей через центр масс:
а) стержня длиной l относительно оси, перпендикулярной стержню,
б) обруча (тонкостенного цилиндра) относительно оси, перпендикулярной плоскости обруча (совпадающей с осью цилиндра),
где R - радиус обруча (цилиндра);
в) диска радиусом R относительно оси, перпендикулярной плоскости диска,
Проекция на ось z момента импульса тела, вращающегося относительно неподвижной оси z,
где w - угловая скорость тела.
Закон сохранения момента импульса систем тел, вращающихся вокруг неподвижной оси z,
= const,
где Jz - момент инерции системы тел относительно оси z; w - угловая скорость вращения тел системы вокруг оси z.
Кинетическая энергия тела, вращающегося вокруг неподвижной оси z,
или
Релятивистская масса
или
где mo - масса покоя частицы; u - ее скорость; с - скорость света в вакууме; b - скорость частицы, выраженная в долях скорости света
(b = u/с).
Взаимосвязь массы и энергии релятивистской частицы
или
где Ео=mос2 - энергия покоя частицы.
Полная энергия свободной частицы
Е = Ео + Т,
где Т - кинетическая энергия релятивистской частицы.
Кинетическая энергия релятивистской частицы
или
Импульс релятивистской частицы
или
Связь между полной энергией и импульсом релятивистской частицы
Примеры решения задач
Пример 1. Платформа в виде сплошного диска радиусом R=1,5 м и массой m1=180 кг вращается около вертикальной оси с частотой n=10 мин-1. В центре платформы стоит человек массой m2=60 кг. Какую линейную скорость u относительно пола помещения будет иметь человек, если он перейдет на край платформы?
Решение. Согласно условию задачи, момент внешних сил относительно оси вращения z, совпадающей с геометрической осью платформы, можно считать равным нулю. При этом условии проекция Lz момента импульса системы платформа-человек остается постоянной:
const, (1)
где Jz - момент инерции платформы с человеком относительно оси z;
w - угловая скорость платформы.
Момент инерции системы равен сумме моментов инерции тел, входящих в состав системы, поэтому в начальном состоянии а в конечном состоянии .
С учетом этого равенство (1) примет вид
(2)
где значения моментов инерции J1 и J2 платформы и человека соответственно относятся к начальному состоянию системы; и - к конечному.
Момент инерции платформы относительно оси z при переходе человека не изменяется: . Момент инерции человека относительно той же оси будет изменяться. Если рассматривать человека как материальную точку, то его момент инерции J2 в начальном состоянии (в центре платформы)можно считать равным нулю. В конечном состоянии (на краю платформы) момент инерции человека
Подставим в формулу (2) выражения моментов инерции, начальной угловой скорости вращения платформы с человеком (w = 2pn) и конечной угловой скорости (w' = u/R, где u - скорость человека относительно пола):
После сокращения на R2 и простых преобразований находим скорость
Произведем вычисления:
м/с.
Пример 2. Частица массой m = 0,01 кг совершает гармонические колебания с периодом Т = 2с. Полная энергия колеблющейся частицы Е = 0,1 мДж. Определить амплитуду А колебаний и наибольшее значение силы Fmax, действующей на частицу.
Решение. Для определения амплитуды колебаний воспользуемся выражением полной энергии частицы:
где w = 2p/Т. Отсюда амплитуда
(1)
Так как частица совершает гармонические колебания, то сила, действующая на нее, является квазиупругой и, следовательно, может быть выражена соотношением F = -kx, где k - коэффициент квазиупругой силы; х - смещение колеблющейся точки. Максимальной сила будет при максимальном смещении xmax, равном амплитуде:
Fmax = kA. (2)
Коэффициент k выразим через период колебаний:
k = mw2 = m×4p2/T2. (3)
Подставив выражения (1) и (3) и (2) и произведя упрощения, получим
Произведем вычисления:
0,045 м = 45 мм;
Пример 3. Складываются два колебания одинакового направления, выраженные уравнениями
где А 1 = 3 см, А 2 = 2 см, t 1 = 1/6 с, t 2 = 1/3 с, Т = 2 с. Построить векторную диаграмму сложения этих колебаний и написать уравнение результирующего колебания.
Решение. Для построения векторной диаграммы сложения двух колебаний одного направления надо фиксировать какой-либо момент времени. Обычно векторную диаграмму строят для момента времени t = 0. Преобразовав оба уравнения к канонической форме
х = A cos (wt+j), получим
Отсюда видно, что оба складываемых гармонических колебания имеют одинаковую циклическую частоту
.
Начальные фазы первого и второго колебаний соответственно равны
Произведем вычисления:
с-1;
Изобразим векторы А1 и А2. Для этого отложим отрезки длиной А1 = 3 см и А2 = 2 см под углами j1 = 30о и j2 = 60о к оси 0х. Результирующее колебание будет происходить с той же частотой w и амплитудой А, равной геометрической сумме амплитуд А1 и А2: А = А1 + А2. Согласно теореме косинусов:
Начальную фазу результирующего колебания можно также определить непосредственно из векторной диаграммы (рис. 3):
Произведем вычисления:
см = 4,84 см;
или j = 0,735 рад.
Так как результирующее колебание является гармоническим, имеет ту же частоту, что и слагаемые колебания, то его можно записать в виде
где А = 4,84 см, w = 3,14 с-1, j = 0,735 рад.