Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Кинематика, динамика, законы сохранения энергии и импульса материальной точки. Элементы теории поля




Кинематическое уравнение движения материальной точки (центра масс твердого тела) вдоль оси x

где f(t) - некоторая функция времени.

Проекция средней скорости на ось x

Средняя путевая скорость

где Ds - путь, пройденный точкой за интервал времени Dt. Путь Ds в отличие от разности координат Dx = x2-x1не может убывать и принимать отрицательные значения, т.е. Ds ³ 0.

Проекция мгновенной скорости на ось x

Проекция среднего ускорения на ось x

Проекция мгновенного ускорения на ось x

Кинематическое уравнение движения материальной точки по окружности

 

, r=R-const

Модуль угловой скорости

Модуль углового ускорения

Связь между модулями линейных и угловых величин, характеризующих движение точки по окружности:

где -модуль линейной скорости; и - модули тангенциального и нормального ускорений; w - модуль угловой скорости; e - модуль углового ускорения; R -радиус окружности.

Модуль полного ускорения

или

Угол между полным и нормальным ускорениями

Импульс материальной точки массой m, движущейся со скоростью ,

.

Второй закон Ньютона

где - результирующая сила, действующая на материальную точку.

Силы, рассматриваемые в механике:

а) сила упругости

где -коэффициент упругости (в случае пружины - жесткость);

x - абсолютная деформация;

б) сила тяжести

в) сила гравитационного взаимодействия

где - гравитационная постоянная; m1 и m2 - массы взаимодействующих тел; r - расстояние между телами (тела рассматриваются как материальные точки). В случае гравитационного взаимодействия силу можно выразить также через напряженность гравитационного поля:

г) сила трения (скольжения)

где f - коэффициент трения; N - сила нормального давления.

Закон сохранения импульса

или для двух тел (i=2)

,

где и - скорости тел в момент времени, принятый за начальный; и - скорости тех же тел в момент времени, принятый за конечный.

Кинетическая энергия тела, движущегося поступательно,

, или

Потенциальная энергия:

а) упругодеформированной пружины

где - жесткость пружины; x - абсолютная деформация;

б) гравитационного взаимодействия

где - гравитационная постоянная; m1 и m2 - массы взаимодействующих тел; r - расстояние между ними (тела рассматриваются как материальные точки);

в) тела, находящегося в однородном поле силы тяжести,

 

где g - ускорение свободного падения; h - высота тела над уровнем, принятым за нулевой (формула справедлива при условии h<<R, где

R — радиус Земли).

Закон сохранения механической энергии

Работа А, совершаемая результирующей силой, определяется как мера изменения кинетической энергии материальной точки:

 

Примеры решения задач

Пример 1. Уравнение движения материальной точки вдоль оси имеет вид x = A + Bt + Ct3, где А = 2 м, В = 1 м/с, С = - 0,5 м/с3. Найти координату х, скорость и ускорение точки в момент времени t = 2с.

Решение. Координату xнайдем, подставив в уравнение движения числовые значения коэффициентов A, B и C и времени t:

x = (2 + 1×2 - 0,5×23)м = 0.

Мгновенная скорость относительно оси хесть первая производная от координаты по времени:

.

Ускорение точки найдем, взяв первую производную от скорости по времени:

В момент времени t = 2 с

= (1 - 3×0,5×22) м/c = - 5 м/c;

= 6(- 0,5) × 2 м/с2 = - 6 м/с2.

 

Пример 2. Тело вращается вокруг неподвижной оси по закону j = A + Bt + Ct2, где A= 10 рад, В = 20 рад/с, С = - 2 рад/с2. Найти полное ускорение точки, находящейся на расстоянии г=0,1 м от оси вращения, для момента времени t =4 с.

Решение. Полное ускорение точки, движущейся по кривой линии, может быть найдено как геометрическая сумма тангенциального ускорения , направленного по касательной к траектории, и нормального ускорения , направленного к центру кривизны траектории (рис.1):

Так как векторы и взаимно перпендикулярны, то модуль ускорения

Модули тангенциального и нормального ускорения точки вращающегося тела выражаются формулами

где w - модуль угловой скорости тела; e - модуль его углового ускорения.

Подставляя выражения и в формулу (1), находим

 

. (2)

Угловую скорость w найдем, взяв первую производную угла поворота по времени:

В момент времени t = 4 с модуль угловой скорости

w = [20 + 2(-2)4] рад/с = 4 рад/с.

Угловое ускорение найдем, взяв первую производную от угловой скорости по времени:

= 2 C = - 4 рад/с2.

Подставляя значения w, e и r в формулу (2), получаем

м/с = 1,65 м/с2.

Пример 3. Шар массой m1, движущийся горизонтально с некоторой скоростью , столкнулся с неподвижным шаром массой m2. Шары абсолютно упругие, удар прямой, центральный. Какую долю e своей кинетической энергии первый шар передал второму?

Решение. Доля энергии, переданной первым шаром второму, выразится соотношением

(1)

где Т1 - кинетическая энергия первого шара до удара; u2 и Т2 - скорость и кинетическая энергия второго шара после удара.

Как видно из формулы (1), для определения e надо найти u2. Согласно условию задачи импульс системы двух шаров относительно горизонтального направления не изменяется и механическая энергия шаров в другие виды не переходит. Пользуясь этим, найдем:

(2)

(3)

Решим совместно уравнения (2) и (3):

Подставив это выражение u2 в формулу (1) и сократив на u1 и m1, получим

Из найденного соотношения видно, что доля переданной энергии зависит только от масс сталкивающихся шаров.

Пример 4. Через блок в виде сплошного диска, имеющего массу m= 80г (рис.2), перекинута тонкая гибкая нить, к концам которой подвешены грузы с массами m1 = 100г и m2 = 200г. Определить ускорение, с которым будут двигаться грузы, если их предоставить самим себе. Трением и массой нити пренебречь.

Решение: Рассмотрим силы, действующие на каждый груз и на блок в отдельности. На каждый груз действуют две силы: сила тяжести и сила упругости (сила натяжения нити). Направим ось х вертикально вниз и напишем для каждого груза уравнение движения (второй закон Ньютона) в проекциях на эту ось. Для первого груза

; (1)

для второго груза

(2)

Под действием моментов сил и относительно оси z перпендикулярной плоскости чертежа и направленной за чертеж, блок приобретает угловое ускорение e. Согласно основному уравнению динамики вращательного движения,

(3)

где - момент инерции блока (сплошного диска) относительно оси z.

Согласно третьему закону Ньютона, с учетом невесомости нити и . Воспользовавшись этим подставим в уравнение (3) вместо и выражения и , получив их предварительно из уравнений (1) и (2):

После сокращения на и перегруппировки членов найдем

(4)

Формула (4) позволяет массы m1, m2 и m выразить в граммах, как они даны в условии задачи, а ускорение - в единицах СИ. После подстановки числовых значений в формулу (4) получим

 

Пример 5. Ракета установлена на поверхности Земли для запуска в вертикальном направлении. При какой минимальной скорости u1, сообщенной ракете при запуске, она удалится от поверхности на расстояние, равное радиусу Земли (R=6,37×106 м)? Всеми силами, кроме силы гравитационного взаимодействия ракеты и Земли,пренебречь.

Решение. Со стороны Земли на ракету действует сила тяжести, являющаяся потенциальной силой. При неработающем двигателе под действием потенциальной силы механическая энергия ракеты изменяться не будет. Следовательно,

Т1 + П1 = Т2 + П2, (1)

где Т1, П1 и Т2, П2 - кинетическая и потенциальная энергии ракеты после выключения двигателя в начальном (у поверхности Земли) и конечном (на расстоянии, равном радиусу Земли) состояниях.

Согласно определению кинетической энергии,

Потенциальная энергия ракеты в начальном состоянии

По мере удаления ракеты от поверхности Земли ее потенциальная энергия возрастает, а кинетическая - убывает. В конечном состоянии кинетическая энергия Т2 станет равной нулю, а потенциальная - достигнет максимального значения:

Подставляя выражения Т1, П1, Т2 и П2 в (1), получаем

откуда

Заметив, что GM/R2=g (g - ускорение свободного падения у поверхности Земли), перепишем эту формулу в виде

что совпадает с выражением для первой космической скорости.

Произведем вычисления:

м/с = 7,9 км/с.

 





Поделиться с друзьями:


Дата добавления: 2016-11-03; Мы поможем в написании ваших работ!; просмотров: 641 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2574 - | 2263 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.