Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Ряды Фурье для четных и нечетных функций




В некоторых случаях формулы для вычисления коэффициентов Фурье могут быть упрощены. Это имеет место для четных и нечетных функций.

Приведем несколько очевидных свойств четных и нечетных функций.

I. Произведение четной функции на четную или нечетной на нечетную есть функция четная.

II. Произведение четной функции на нечетную есть функция нечетная

III. Если – четная функция, то .

IV. Если – нечетная функция, то .

Допустим, что нужно разложить в ряд Фурье четную функцию .

Так как – функция четная, а – функция нечетная, то произведение будет функцией четной, а – функцией нечетной (свойства I и II). На основании свойств III и IV получим

,

,

.

Соответственно этому ряд Фурье для четной функции будет иметь вид

.

Если требуется разложить в ряд Фурье нечетную функцию, то вследствие свойств I и II произведение будет функцией нечетной, а – функцией четной. Поэтому

,

.

Ряд Фурье для нечетной функции будет иметь вид

.

Таким образом, четная функция разлагается в ряд только по косинусам, а нечетная функция – только по синусам кратных дуг.

§3. Разложение в ряд Фурье периодических функций

Пусть функция , удовлетворяющая условиям Дирихле, имеет период , т.е. .

В случае функции , имеющей период , коэффициенты Эйлера-Фурье вычисляются по формулам:

, , (2)

(8)

В точках разрыва функции и в концах интервала сумма ряда Фурье определяется аналогично тому, как это имеет место при разложении в интервале .

В случае разложения функции в ряд Фурье в произвольном интервале длины пределы интегрирования в формулах (2) следует заменить соответственно на и .

Пример. Разложить в ряд Фурье периодическую функцию с периодом 2, заданную на отрезке уравнением .

Решение. Рассматриваемая функция является четной. Ее график – дуга параболы, заключенная между точками и .

Так как – четная функция, то и будет четной функцией. Здесь , поэтому

,

.

Интегрируя дважды по частям, получим.

1) .

.

2) .

.

Так как рассматриваемая функция – четная, то . Следовательно,

.●

Если функция задана на отрезке , то для разложения в ряд Фурье достаточно доопределить ее на отрезке произвольным способом, а затем разложить в ряд Фурье, считая ее заданной на сегменте . Наиболее целесообразно функцию доопределить так, чтобы ее значения в точках сегмента находилась из условия или . В первом случае функция на сегменте будет четной, а во втором – нечетной. При этом часто говорят, что функция в интервале разложена в ряд Фурье по синусам или косинусам кратных дуг.

Пример. Разложить функцию , заданную на полупериоде , в ряд по синусам.

Решение. Для разложения функции в ряд по синусам надо ее продолжить на интервал нечетным образом, затем продолжить полученную функцию периодически на всю числовую ось.

;

Здесь надо принять l = 1 и = 1. Тогда

Итак, ряд Фурье для данной функции имеет вид

.●





Поделиться с друзьями:


Дата добавления: 2016-10-23; Мы поможем в написании ваших работ!; просмотров: 1025 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент всегда отчаянный романтик! Хоть может сдать на двойку романтизм. © Эдуард А. Асадов
==> читать все изречения...

2976 - | 2683 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.