Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Частные случаи первого закона термодинамики для изопроцессов




При изохорном процессе объем газа остается постоянным, поэтому газ не совершает работу. Изменение внутренней энергии газа происходит благодаря теплообмену с окружающими телами:

При изотермическом процессе количество теплоты, переданное газу от нагревателя, полностью расходуется на совершение работы:

При изобарном расширении газа подведенное к нему количество теплоты расходуется как на увеличение его внутренней энергии и на совершение работы газом:

Адиабатный процесс - термодинамический процесс в теплоизолированной системе.

 

Теплоизолированная система - система, не обменивающаяся энергией с окружающими телами.

Формула КПД теплового двигателя:

Здесь Q1 - количество теплоты, полученное рабочим телом,
Q2 - количество теплоты, отданное холодильнику.
A - полезная работа.

Формула Карно для оценки максимального КПД теплового двигателя:

T1 - температура нагревателя, T2 - температура холодильника.


 

7) Термодинамические циклы

Ряд последовательных термодинамических процессов, представляющих собой один замкнутый, называется круговым термодинамическим процессом или циклом.

В рассмотренных ранее политропных процессах изучались вопросы получения работы вследствие подведенной теплоты, изменения внутренней энергии рабочего тела или вследствие того и другого. При однократном расширении газа в цилиндре можно получить лишь ограниченное количество работы, так как при любом процессе расширения все же наступит момент, когда температура и давление рабочего тела станут равными температуре и давлению окружающей среды и на этом прекратится получение работы. Для повторного получения работы необходимо осуществить процесс сжатия и возвратить рабочее тело в первоначальное состояние. Таким образом, для непрерывного производства работы рабочее тело должно участвовать в круговом термодинамическом процессе (рис.1).

 

Рис. 1

 

Циклы могут быть обратимыми, состоящими из обратимых процессов, и необратимыми. В основе анализа эффективности современных тепловых машин лежат обратимые циклы, т.е. идеальные циклы, не учитывающие потери на трение и т.д.

Циклы подразделяются на прямые и обратные. Прямыми называются циклы, в которых теплота преобразуется в работу, обратными – в которых теплота передается от более холодного тела к более нагретому. При изображении циклов на термодинамических диаграммах последовательный обход процессов в прямом цикле происходит по часовой стрелке (см. рис.1), в обратном цикле – против часовой стрелки.

Для всех циклов очевидным является условие:

,

так как цикл начинается и заканчивается в одной точке.

Тогда первый закон термодинамики для цикла запишется следующим образом:

,

где Qц – теплота, участвующая в цикле, равная алгебраической сумме количеств теплоты для каждого процесса; Lц – работа цикла (цикловая работа), равная соответственно алгебраической сумме работ в каждом процессе.

 

Прямой цикл. Прямой цикл – это цикл двигателя. В этом цикле происходит преобразование теплоты в механическую работу (рис.2).

 

 

Рис.2

 

В процессе 1а2 к рабочему телу от горячего источника температурой Т1 подводится теплота Q1 и совершается положительная работа. В процессе 2b1 от рабочего тела к холодному источнику температурой Т2 отводится количество теплоты Q2 и совершается отрицательная работа. Количество работы в процессе расширения L1a2 , больше, чем работа сжатия L2b1, и цикловая работа будет положительна и равна:

.

На рисунке работа цикла изображается площадью фигуры пл.1-а-2-b-1.

В соответствии с первым законом термодинамики для цикла:

.

Для оценки эффективности преобразования теплоты в работу в прямом цикле используют термический коэффициент полезного действия (КПД), под которым понимают отношение работы, полученной в цикле, к затраченной теплоте:

.

Таким образом, термический КПД показывает какая часть теплоты, подведенной к циклу от нагревателя, превращена в полезную работу. Согласно второму закону термодинамики эта величина всегда меньше единицы (<100%).

Обратный цикл. Обратный цикл служат для производства холода или теплоты. В нем рабочее тело переносит теплоту от холодного источника к горячему. Для совершения такого несамопроизвольного процесса затрачивается работа цикла. Обратные циклы реализуются в холодильных машинах и тепловых насосах (рис.3).

 

 

Рис.3

В процессе расширения 1а2 температура рабочего тела ниже Т2,в результате чего от холодного источника к рабочему телу передаётся количество теплоты Q2. В процессе сжатия 2в1 температура рабочего тела выше Т1 и горячему источнику от рабочего тела передаётся количество теплоты Q1. Так как на процесс сжатия работы затрачивается больше и она отрицательна, работа цикла будет равна:

.

Первый закон термодинамики имеет вид:

.

Для оценки работы холодильных машин применяется так называемый холодильный коэфф ициент, определяемый отношением полезной теплоты Q2, отнятой от холодного источника ограниченной емкости, к затраченной работе:

.

В холодильной машине теплота Q1 выбрасывается в окружающую среду – источник неограниченной емкости.

Машины, основным продуктом производства которых является теплота Q1, передаваемая в источник ограниченной емкости, называются тепловыми насосами. Эффективность работы в этом случае оценивается отопительным коэффициентом, представляющим собой отношение теплоты Q1, переданной потребителю, к затраченной работе:

.

В цикле теплового насоса теплота Q2 отбирается от источника неограниченной емкости (например, атмосфера).

Значения холодильного и отопительного коэффициентов могут изменяться в широких пределах 0 ≤ ε,φ < ∞.


 

8) Циклы Карно

В 1844 г. французский инженер С.Карно опубликовал работу «Размышление о движущей силе огня и машинах, способных развивать эту силу», которая стала основой теории тепловых машин. В этой работе Карно впервые сформулировал положения второго закона термодинамики о возможностях превращения теплоты в работу, а также рассмотрел цикл теплового двигателя, который служит эталоном для оценки совершенства идеальных циклов, так как имеет максимальное значение КПД в системе с двумя изотермическими источниками теплоты.

Цикл Карно состоит из четырех обратимых процессов: двух изотермических и двух адиабатных. Он может быть реализован как в тепловом двигателе, так и в холодильной машине. Процессы подобраны таким образом, что эффективность преобразования энергии в цикле оказывается максимально возможной по сравнению с любым другим циклом, реализованном в том же диапазоне температур.

На рис.4 изображен обратимый цикл Карно для теплового двигателя.

 

 

Рис.4

 

Цикл осуществляется между двумя источниками теплоты: нагревателем температурой Т1 и холодильником температурой Т2. Предполагается, что источники теплоты обладают бесконечным запасом энергии и подвод или отвод некоторого количества теплоты не изменит их температуры.

Пусть в цилиндре под поршнем находится некоторое количество газа с параметрами р1, V1, Т1. При взаимодействии с нагревателем рабочее тело изотермически расширяется с подводом теплоты Q1 (процесс 1-2). Работа в процессе:

.

В точке 2 цилиндр изолируется от нагревателя и газ продолжает расширяться адиабатно в процессе 2-3. В этом процессе в работу расширения превращается часть внутренней энергии газа и его температура понижается до Т2, равной температуре холодильника. Работа процесса:

.

Сжатие рабочего тела происходит за счет энергии, накопленной в маховике. Газ сжимается изотермически при взаимодействии с холодильником и передает ему количество теплоты Q2. Работа в процессе 3-4:

.

В точке 4 рабочее тело изолируется от холодильника и дальнейшее сжатие происходит адиабатно с повышением температуры газа до Т1. Работа в процессе 4-1:

.

Работа цикла складывается из работ, совершенных в каждом процессе, причем, как видно из приведенных формул, работы в адиабатных процессах при суммировании взаимно уничтожаются:

.

Используя связь между параметрами в адиабатном процессе

,

можно показать, что

.

Тогда с учетом выражение для термического КПД цикла будет иметь вид:

.

Эффективность цикла не зависит от свойств рабочего тела, а определяется только диапазоном температур. Чем больше этот диапазон, тем больше КПД.

Пример:

Найти термический КПД цикла в температурном диапазоне:

T1=2000K

T2=200K

= 90%.

 

Цикл Карно с протеканием процессов против часовой стрелки называется обратным. Это цикл холодильных машин и тепловых насосов.

Для наглядности сравнения различных типов цикла Карно на рис.9.9 в диаграмме Т,s- представлены: а) - цикл двигателя, б) - цикл холодильной машины, в) - цикл теплового насоса. Для всех циклов окружающая среда выступает в зависимости от их предназначения в виде горячего или холодного источника теплоты с температурой ТОС.

В отличие от цикла двигателя (рис.9.9,а), где окружающая среда выступает в качестве холодного источника теплоты, в цикле Карно холодильной машины (рис.9.9,б) окружающая среда является горячим источником теплоты.

В холодильной установке осуществляется обратный цикл Карно, в котором рабочее тело забирает теплоту q2 от охлаждаемого тела с температурой ТХ и отдает теплоту q1 в окружающую среду с температурой ТОС > TХ. Для осуществления передачи теплоты от холодного тела к теплому затрачивается работа lt, которая преобразуясь в теплоту q1=lt+q2, вместе с q2 передается окружающей среде. При заданных температурах охлаждаемого тела и окружающей среды обратный цикл Карно будет самым экономичным. Его холодильный коэффициент определяется только температурами TОС и Tх, и рассчитывается как

(9.10)

В тепловом насосе тоже осуществляется обратный цикл Карно (рис.9.9,в), но в этом цикле окружающая среда выступает в роли холодного источника теплоты. При работе теплового насоса даровая теплота внешней среды (т.е. отсутствует сжигание топлива и т.п.) q2 за счет совершения работы lt передается потребителю теплоты с температурой ТТПОС, при этом работа lt преобразуется в теплоту и общее количество теплоты, полученное потребителем, будет представлено величиной q1=lt+q2. Коэффициент преобразования теплоты, характеризующий эффективность цикла Карно теплового насоса, определяется только температурами ТОС и ТТП, и расчитывается как

(9.11)

Холодильный коэффициент (9.10) и коэффициент преобразования теплоты (9.11) в циклах Карно при заданной температуре окружающей среды ТОС возрастают при увеличении ТХ и уменьшении ТТП.

Обратимые циклы Карно холодильной машины и теплового насоса при постоянных температурах источников теплоты ТОС и TХ или ТОС и ТТП имеют наибольшую экономичность по сравнению с другими циклами, имеющими такие же источники теплоты.

Анализируя обратный цикл Карно, можно привести следующие формулировки второго закона термодинамики:

Передать теплоту от холодного тела к горячему возможно только при затрате работы или другого компенсационного процесса;

Самопроизвольный переход теплоты от холодного тела к горячему невозможен.

Осуществить на практике обратимый цикл Карно невозможно, поскольку в природе не существует обратимых процессов, но он является эталоном экономичности, к которому должны стремиться реальные циклы с изотермическими источниками теплоты. Поскольку большинство реальных циклов имеют источники теплоты с переменной температурой, то для получения эталонного цикла Карно при таких источниках теплоты пользуются понятием среднетермодинамической температуры, используя его можно представить любой процесс подвода и отвода теплоты в виде изотерм

 

 


 

9) Второй и третий принцип термодинамики





Поделиться с друзьями:


Дата добавления: 2016-10-22; Мы поможем в написании ваших работ!; просмотров: 1528 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2378 - | 2186 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.