o Если каждой паре возможных значений случайных величин X и Y соответствует одно возможное значение случайной величины Z, то Z называют функцией двух случайных аргументов X и Y:
.
Далее на примерах будет показано, как найти распределение функции по известным распределениям слагаемых. Такая задача часто встречается на практике. Например, если Х—погрешность показаний измерительного прибора (распределена равномерно), то возникает задача—найти закон распределения суммы погрешностей .
Случай 1. Пусть Х и Y— дискретные независимые случайные величины. Для того чтобы составить закон распределения функции Z=X+Y, надо найти все возможные значения Z и их вероятности. Иными словами, составляется ряд распределения случайной величины Z.
Пример 1. Дискретные независимые случайные величины Х и Y, заданы распределениями
Х | ||
Р | 0,4 | 0,6 |
и
Y | ||
P | 0,2 | 0,8 |
Составить распределение случайной величины Z=X+Y.
Возможные значения Z есть суммы каждого возможного