Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Прохождение горячих электронов сквозь тонкие




Металлические пленки

 

Выше мы рассматривали явления, связанные с прохождением носителей сквозь диэлектрические тонкие пленки. Здесь исследуем прохождение так называемых горячих электронов через тонкие металлические пленки.

Понятие «горячий электрон» относится к неравновесным электронам, энергия которых значительно больше энергии равновесных носителей. Название обусловлено тем, что эквивалентная температура таких электронов значительно больше температуры кристалла. Горячий электрон, попадая в металл, испытывает постоянное взаимодействие с фононами, свободными электронами, дефектами кристаллической решетки. В процессе такого взаимодействия он отдает избыточную энергию и переходит в равновесное состояние. Однако если длина свободного пробега электрона значительно больше толщины пленки, то практически все горячие электроны пройдут сквозь пленку.

Ввод горячих электронов в металлическую пленку удается осуществить за счет туннелирования, инжекции через барьер Шоттки или инжекции на основе токов, ограниченных пространственным зарядом. На рис. 9.9 показаны энергетические диаграммы структур, в которых возможно введение горячих электронов через барьер Шоттки (а) и с помощью туннелирования (б). В первом случае это П1ДП2-структура. За счет приложенного напряжения U высота потенциального барьера на границе полупроводник-металл существенно меняется, что позволяет реализовать эмиссию Шоттки. Если металлическая пленка достаточно тонкая и рассеяния электронов в ней не происходит, а также φэ < φк, то эмиссионный поток электронов достигает второго полупроводникового электрода (П2).

П 1
П 2
Д

а) б)

 

Рис. 9.9. Энергетические диаграммы инжекции электронов сквозь металлическую пленку: а – инжекция Шоттки; б – туннелирование

Ввод электронов в металлическую пленку с помощью туннельного эффекта может быть осуществлен, например, в структуре металл-диэлектрик-металл-полупроводник (рис. 9.9, б). Из металла М1 электроны туннелируют в диэлектрик, а оттуда попадают в металл М2. Если высота коллекторного барьера меньше, чем энергия электрона - eUэ, то горячие электроны попадают в коллектор-полупроводник.

Ток туннельной эмиссии зависит от толщины металлической пленки d и длины поглощения электронов L

. (9.38)

Сравнение различных механизмов инжекции носителей показало, что наиболее эффективной является инжекция через барьер Шоттки.

Исследование поведения горячих электронов в тонкой металлической пленке привлекает внимание в связи с возможностью построения транзисторов на горячих электронах.

Действительно, например, ПМП-структура (рис. 9.9, а) в определенных условиях может работать как транзистор, имеющий тонкопленочную металлическую базу. Контактный барьер на границе эмиттер-база (П1М) должен пропускать значительный поток неравновесных горячих электронов в металл и не пропускать встречный поток равновесных электронов. Некоторая часть инжектированных электронов рассеивается и создает базовый ток. Основная часть проходит под контактным барьером и создает коллекторный ток.

 





Поделиться с друзьями:


Дата добавления: 2016-10-07; Мы поможем в написании ваших работ!; просмотров: 638 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если президенты не могут делать этого со своими женами, они делают это со своими странами © Иосиф Бродский
==> читать все изречения...

2487 - | 2350 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.