Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Уравнение Шредингера. Волновая функция




 

Из вышеизложенного с очевидностью следует, что в микромире классическая механика неприменима. Ее место занимает квантовая механика – раздел теоретической физики, описывающий поведение микрочастиц.

Аналогом основного уравнения динамики для микромира является уравнение, постулированное Шредингером и носящее его имя. Для микрочастицы, находящейся в силовом поле и обладающей потенциальной энергией U (x, y, z, t), уравнение имеет следующий вид:

, (2.7)

где Ψ – волновая функция, в общем случае зависящая от координат и времени;

i – мнимая единица.

Волновая функция описывает поведение микрочастицы. Она является комплексной функцией, и физический смысл имеет не сама функция, а ее произведение на комплексно сопряженную функцию Ψ *. Такое произведение действительно и пропорционально вероятности того, что в момент t частица находится в элементе объема dV. Эта вероятность ω (x, y, z, t) определяется из выражения

 

w (x, y, z, t) dV = Ψ(x, y, z, t) Ψ * (x, y, z, t) dV. (2.8)

 

В соответствии со смыслом волновой функции, она должна быть непрерывной, однозначной и конечной во всех точках пространства, а также иметь непрерывную первую производную.

Для волновой функции справедливо условие нормировки

, (2.9)

которое свидетельствует, что нахождение частицы в объеме V, если она находится в элементе этого объема, событие достоверное.

В общем случае потенциальная энергия микрочастицы зависит от координат и времени. Однако существует ряд задач для полей стационарного характера. В этих практически важных случаях потенциальная энергия не зависит от времени. Тогда выражение для волновой функции можно представить в виде произведения

 

Ψ(x, y, z, t) = ψ (x, y, z) φ (t). (2.10)

 

Для простоты выберем одномерный случай. Тогда можно записать

 

, (2.11)

 

Ψ(x, t) = ψ (x) φ (t). (2.12)

 

Подставив (2.12) в (2.11) и разделив переменные, получим

, (2.13)

Левая часть равенства является функцией только x, правая часть зависит только от t. Это возможно только тогда, когда каждая часть равна одной и той же постоянной величине. Можно показать, что эта постоянная есть полная энергия частицы E. Приравняем левую и правую части к E и преобразуем их. Тогда получим два уравнения для одномерного стационарного случая

, (2.14)

. (2.15)

Последнее уравнение легко интегрируется и дает решение в виде

, (2.16)

где En – одно из собственных значений энергии частицы.

Из формулы (2.16) видно, что функция φn (t) является гармонической с частотой νn = En / ћ.

Для того чтобы решить уравнение (2.14), необходимо определить вид функции потенциального поля U (x) и подставить его в (2.14). Тогда решение (2.13) будет иметь вид

Ψ(x, t)= . (2.17)

В данной главе приведены решения уравнения Шредингера для некоторых стационарных полей.

 





Поделиться с друзьями:


Дата добавления: 2016-10-07; Мы поможем в написании ваших работ!; просмотров: 385 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2332 - | 2011 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.