Углеводы
Углеводы – характеристика.
В пищевых продуктах растительного происхождения основную массу сухого остатка составляют углеводы 60-80%. В продуктах животного происхождения углеводов мало 1-5%. Углеводы подразделяют на три основные группы: моносахариды, олигосахариды и полисахариды.
Моносахариды. Основными моносахаридами, содержащимися в пищевых продуктах, являются глюкоза, фруктоза и галактоза.
Глюкоза (виноградный сахар) в свободном виде содержится в плодах (винограде, черешне, сливе), овощах и меде. Из остатков глюкозы построены крахмал, клетчатка, гликоген, мальтоза. Она является составной частью сахарозы и лактозы (молочного сахара).
Фруктоза ( плодовый сахар) содержится в чистом виде в плодах (винограде, яблоках) и меде, входит в состав сахарозы.
Галактоза в свободном состоянии в пищевых продуктах не содержится, но является составной частью лактозы и раффинозы.
Олигосахариды. Основными в этой группе углеводов являются дисахариды – сахароза, мальтоза и лактоза.
Сахароза (тростниковый сахар) содержится в плодах, крупах. Для пищевых целей сахарозу (сахар-песок, сахар-рафинад) получают из сахарной свеклы или сахарного тростника.
Мальтоза в свободном виде в продуктах питания не содержится, а является продуктом неполного ферментативного гидролиза крахмала.
Лактоза содержится только в молоке и молочных продуктах. Моно- и дисахариды обладают сладким вкусом. Наиболее сладкой является фруктоза, а наименее – лактоза.
Полисахариды. Их подразделяют на две группы: гомополисахариды (крахмал, целлюлоза, гликоген) и гетерополисахариды (пентозаны, пектиновые вещества, камеди, гемицеллюлозы).
Крахмал является резервным полисахаридом и накапливается в клетках картофеля, в зерне злаков и семенах бобовых. Из картофеля и зерна получают чистый крахмал (картофельный, рисовый, кукурузный, пшеничный и др.), который используется в кулинарии в качестве загустителя.
Целлюлоза (или клетчатка) является основным компонентом клеточных стенок растительных тканей, в которых она находится в волокнообразной форме (фибриллы), сформированной из параллельно расположенных макромолекул, объединенными водородными связями. Целлюлоза практически не переваривается в кишечнике. В пищеварительном тракте человека целлюлоза стимулирует деятельность кишечника, нормализует деятельность кишечной микрофлоры, сорбирует стерины, препятствуя их всасыванию, способствует выведению холестерина. При тепловой кулинарной обработке практически не изменяется.
Гемицеллюлозы, так же как и целлюлоза, находятся в клеточных стенках овощей и плодов, в крупах, относятся к группе пищевых волокон. Гемицеллюлозы химически менее стойкие, чем целлюлоза и при тепловой кулинарной обработке подвергается гидролизу.
Пектиновые вещества Они содержатся в клеточном соке плодов и овощей, входят в состав их клеточных стенок. Пектины являются хорошими структурообразователями, обладая высокими желирующими свойствами, формируют структуру желе, самбуков, фруктовых начинок, джема, повидла. Изменения пектиновых веществ играют большую роль в формировании качества готовой продукции из овощей.
Камеди представляют собой нейтральные полисахариды, состоящие из остатков маннозы и галактозы. Камеди обладают повышенной вязкостью, набухаемостью, клейкостью и применяются в качестве связующих веществ и загустителей.
Гликоген (животный крахмал) является резервным полисахаридом, накапливается в мышечной ткани и печени, из которого в результате гликолиза высвобождается энергия, необходимая организму при напряженной работе мышц.
Кислотный и ферментативный гидролиз сахарозы.
Кислотный гидролиз сахарозы. В процессе приготовления сладких блюд из плодов и ягод, варки плодово-ягодных начинок, кондитерской помадки, как содержащаяся в плодах и ягодах сахароза, так и та, что добавляется в изделия в чистом виде, подвергается кислотному гидролизу с образованием равных количеств глюкозы и фруктозы, смесь которых называется инвертным сахаром. Инвертный сахар по сравнению с сахарозой более сладок и поэтому в той или иной степени усиливает сладость блюд и изделий. К тому же он предохраняет кондитерскую помадку от засахаривания.
Кислотный гидролиз сахарозы происходит вследствие нагревания ее водных растворов в присутствии органических кислот, содержащихся в клеточном соке плодов и ягод или добавляемых при приготовлении изделий (лимонной, уксусной).
Количество образующегося в блюдах и изделиях инвертного сахара зависит от продолжительности нагревания, вида и концентрации органической кислоты, взаимодействующей с сахарозой. С увеличением продолжительности теплового воздействия и с повышением концентрации кислоты степень инверсии сахарозы возрастает.
Ферментативный гидролиз сахарозы и мальтозы имеет место в процессе брожения дрожжевого теста и в начальный период выпечки изделий из него, а также в производстве пива, кваса, вина и других продуктов. В процессе приготовления мучных кулинарных, кондитерских и булочных изделий из дрожжевого теста в него добавляют сахар (2,5...21 %). Мальтоза образуется в процессе брожения теста в результате действия на крахмал амилолитических ферментов.
Находящиеся в тесте сахароза и мальтоза под действием ферментов дрожжей (сахарозы и мальтазы соответственно) подвергаются гидролизу с образованием инвертного сахара. Следует отметить, что наиболее активной является сахароза, которая в течение нескольких минут после замеса может гидролизовать 7,5 % сахара (от массы муки), но при этом тормозится инверсия мальтозы.
Накаливающиеся в процессе брожения теста глюкоза и фруктоза ферментным комплексом дрожжей подвергаются глубокому расщеплению с образованием этилового спирта и углекислого газа (спиртное брожение), а содержащиеся в дрожжах и муке молочнокислые бактерии вызывают молочнокислое брожение с образованием из глюкозы и фруктозы молочной кислоты, что сдвигает pH в сторону более кислой реакции среды. Этиловый спирт, углекислый газ и молочная кислота участвуют в формировании качества изделий из дрожжевого теста. Молочнокислое брожение играет большую роль при производстве молочнокислых продуктов (простокваши, кефира, кумыса), при изготовлении кваса, при квашении капусты, огурцов.
Наряду с молочной могут образовываться и другие кислоты (уксусная, янтарная, яблочная, лимонная и др.) присутствие которых является нежелательным, так как ухудшает качество готовой продукции из дрожжевого теста.
В процессе кулинарной обработки сахара могут также подвергаться глубоким изменениям, связанным с воздействием на них высоких температур (выше 100 °С — карамелизация) и реакцией меланоидинообразования.
Карамелизация. Карамелизация — это сложный процесс глубокого термического разложения сахаров (сахарозы, глюкозы, фруктозы) под воздействием высоких температур (выше температуры плавления, 100 °С и более) с образованием аморфной массы сложного состава с характерным цветом (от желтого до коричневого), вкусом и запахом. Реакции катализируются небольшими концентрациями кислот, щелочей и некоторых солей. Продукты карамелизации сахарозы являются смесью веществ различной степени полимеризации.
При нагревании сахарозы на первой стадии реакции происходит ее частичная инверсия с образованием глюкозы и фруктозы, из которых при дальнейшем нагревании образуются окрашенные соединения. Основными являются реакции дегидратации — отщепление от молекулы моноз одной или двух молекул воды, в результате чего образуются ангидриды сахаров. Являясь реакционно-способными соединениями, они могут соединяться или друг с другом, или с неизмененной молекулой сахара и образовывать продукты конденсации (реверсии). При длительном нагревании отщепляется третья молекулы воды с образованием оксиметилфурфурола, который при дальнейшем тепловом воздействии может распадаться с разрушением углеводного скелета и образованием муравьиной и левулиновой кислот или образовывать окрашенные соединения. Цветность продуктов карамелизации сахаров обусловлена наличием в их составе сопряженных двойных связей, которые адсорбируют свет определенных длин волн, придавая продуктам коричневый цвет.
Продукты карамелизации сахарозы, выделенные на разных стадиях реакции называются карамеланом C12H1809), карамеленом (С36Н50О25) и карамелином (С24Н30О15). При отщеплении от молекулы сахарозы двух молекул воды (потеря массы 10,5 %) образуется карамелан — вещество светло-соломенного цвета, растворяющееся в холодной воде. При отщеплении от трех молекул сахарозы восьми молекул воды (потеря массы 14 %) образуется карамелен — вещество ярко-коричневого цвета с рубиновым оттенком, растворяющееся в холодной и кипящей воде. При более сильном обезвоживании нагреваемой массы (потеря массы 18,4%) образуется темно-коричневое вещество карамелин, растворяющееся только в горячей воде.
В кулинарной практике используются продукты реакции карамелизации сахаров, известные под названием жженого сахара, для подкрашивания сладких блюд, соусов, бульонов, напитков. Продукты карамелизации сахара обусловливают золотистый цвет поверхности гурьевской каши, а также ее приятный вкус и запах. В формировании цвета корочки булочных изделий, запеченных яблок принимают участие продукты карамелизации сахаров.
Меланоидинообразование(реакция Майяра)
Это сложный окислительно-восстановительный процесс взаимодействия аминосоединений (имеющих свободные аминные группы) с веществами, содержащими свободные карбонильные группы (или гликозидный гидроксил), сопровождающийся появлением промежуточных соединений, а затем высококонденсированных азотсодержащих красящих веществ и небольших количеств углекислого газа, аммиака и воды.
В пищевых системах реакция Майяра является источником как окрашенных низко- и высокомолекулярных соединений, так и соединений, участвующих в формировании вкуса и запаха кулинарной продукции. Скорость течения этой реакции резко возрастает с повышением температуры (особенно при 100 °С и выше). Образующиеся в ходе реакции Майяра соединения не только оказывают влияние на органолептические свойства и пищевую ценность кулинарной продукции, но первичные продукты этой реакции могут реагировать с эндогенными компонентами пищевых продуктов, такими как липиды, флавоноиды, терпены и продукты фрагментации и метаболизма пищевых веществ
Влияние реакции Майяра на качество продукции. В результате реакции Майяра в пищевых продуктах, подвергнутых тепловой кулинарной обработке, появляются химические соединения, которые в них до этого не содержались. Происходящие химические превращения в ходе этой реакции и образующиеся при этом новые химические соединения оказывают влияние, как положительное, так и негативное, на качество кулинарной продукции.
К положительным последствиям реакции Майяра следует отнести:
а) образование сложнейшего комплекса летучих и нелетучих соединений, принимающих участие в формировании вкуса, запаха и цвета кулинарных изделий и блюд (вареного и жареного мяса и птицы, мясных и костных бульонов, жареных и запеченных овощей и др.), мучных кондитерских и булочных изделий;
б) образование химических соединений, обладающих антиоксидантными, антимутагенными, антибиотическими и антиалергенными свойствами.
Среди негативных последствий реакции Майяра следует назвать потери белков и аминокислот, особенно лизина, аргинина и гистидина, как обладающих высокой реакционной способностью. В единичных публикациях указывается, что среди продуктов реакции меланоидинообразования могут быть вещества мутагенного и канцерогенного характера, но достаточных оснований для такого утверждения пока что недостаточно.
Особенности состава и строения крахмала
Технологические свойства нативных крахмалов обусловлены особенностями их структуры и свойств нативных крахмалов. К ним относятся:
• размер и форма зерен крахмала;
• вязкость крахмальных клейстеров;
• водоудерживающая способность;
• студнеобразующая способность клейстеров крахмала;
Крахмал, являясь резервным полисахаридом, содержится в значительных количествах в зерне и продуктах его переработки, в клубнях овощных культур и других растениях.
Богаты крахмалом крупы (63...69 %), мука пшеничная (67...69 %) и бобовые (38...50 %), а из овощей — картофель (12...20 %). Кроме того, в кулинарной практике используют крахмалы, получаемые из картофеля, кукурузы и других культур. В отдельных случаях применяют модифицированные крахмалы.
Особенности химического состава крахмала. Крахмал представляет собой полимеры a-D-глюкозы, находящиеся в двух молекулярных формах: линейной (амилоза) и разветвленной (амилопектин). Соотношение этих полисахаридов различное в разных крахмалах (амилозы
18...30 %, амилопектина 70...82 %). Основным строительным материалом макромолекулы крахмала является глюкоза, имеющая циклическую структуру с шестью атомами в кольце. Кольцо для простоты, как правило, изображают плоским, но в действительности оно является подвижным и может принимать разнообразные формы (конформации). Однако наиболее выгодной в энергетическом плане является форма «кресла». При полимеризации в крахмальную молекулу a-D-глюкоза фиксируется в конформации «кресла».
Амилоза способна образовывать комплексные соединения с йодом, которые окрашиваются в синий цвет.
Низкомолекулярная фракция амилозы растворяется в холодной воде, а высокомолекулярные растворяются при нагревании чуть выше температуры клейстеризации, и тем больше, чем выше температура.
Благодаря длинным линейным цепям молекулы амилозы могут объединяться друг с другом и осаждаться из раствора. Этот процесс называется ретроградацией.
Амилопектин не растворяется не только в холодной, но и в горячей воде, а образует вязкие стабильные растворы. С йодом амилопектин дает фиолетовое с красноватым оттенком окрашивание.
Строение крахмальных зерен (гранул). Крахмал синтезируется в растительных клетках в виде микроскопических зерен (гранул), которые образуют пластиды, называемые амилопластами. В крупах зерновых культур, содержащих простые зерна крахмала (пшеничная, кукурузная, ячменная, пшено), каждый аминопласт состоит из одного зерна, тогда как в рисовой и овсяной крупах зерна крахмала составные, и каждый аминопласт содержит множество зерен.
Форма и распределение размеров крахмальных зерен зависят от ботанического происхождения крахмала. Типичный размер зерен колеблется от 1 до 100 мкм. Зерна рисового и кукурузного крахмалов мало отличаются по размерам, тогда как ржавой, пшеничный и картофельный крахмалы имеют как крупные, так и мелкие зерна. Форма крахмальных зерен у разных видов крахмалсодержащего сырья неодинакова. Зерна картофельного крахмала имеют преимущественно овальную форму, тогда как форма зерен кукурузного и рисового крахмалов, как правило, многогранная, а пшеничного — линзообразная, круглая.
Рост крахмала происходит путем наслоения, что обусловливает слоистость структуры крахмальных зерен, которая у одних крахмалов хорошо выражена (как у картофельного), а у других в меньшей степени (зерновые крахмалы).
Гранулярная структура крахмала установлена задолго до установления его полимерной структуры. На рис. 6.7 приведено схематическое представление организации зерен крахмала.
Зерна крахмала, представляющие нижний уровень организации, двояко преломляются в поляризованном свете, что указывает на регулярную организацию полимеров (амилопектина и амилозы) внутри зерен. Следующий уровень структуры образуют так называемые кольца роста — многослойные концентрические структуры, которые состоят
из чередующихся твердых полукристаллических и мягких аморфных оболочек. Кристалличность крахмала связана с разветвлениями ами- лопектина, но при этом точки ветвления амилопектина и амилозы неупорядоченны, что является причиной образования аморфных ламелл. В основе кристаллической структуры крахмала — двойные спирали, каждый виток которых состоит из шести глюкозных остатков.
В процессе фотосинтеза молекулы крахмала накапливаются последовательными слоями. При этом молекулы амилозы и амилопектина прочно связываются друг с другом, образуя радиально ориентированные кристаллические пучки, называемые мицеллами.
Изменение крахмала в технологических процессах.
В продукции общественного питания крахмал является структурообразующим веществом (загустителем, гелеобразователем) в результате его трансформации в процессе гидротермической обработки пищевых продуктов. Благодаря этим свойствам крахмал находит широкое технологическое применение. В процессе тепловой кулинарной обработки крахмал, содержащийся в пищевых продуктах, претерпевает значительные структурные и физико-химические изменения, связанные с воздействием на него горячей воды в широком диапазоне температур (до 100 °С), высоких температур при сухом нагреве (120...180 °С) и амилолитических ферментов, которые оказывают существенное влияние на его функционально-технологические свойства и качество крахмалсодержащей продукции.
Набухание и клейстеризация крахмала
Взаимодействие полимеров крахмала с водой в значительной степени предопределяет структуру и консистенцию продукции общественного питания, содержащую крахмал (соусы, кисели, каши, мучные изделия и т. д.). Характер выраженности изменений структуры и физико-химических свойств крахмала зависит от количества воды в системе, температуры и продолжительности нагревания. Вода легко проникает в помещенные в воду крахмальные зерна. При гидратации (при комнатной температуре) крахмал может удерживать до 30 % воды от сухой массы, но зерна крахмала при этом набухают незначительно. Их объем увеличивается примерно на 5 %.
Термодинамические свойства воды как растворителя усиливаются с повышением температуры, которое усиливает колебание крахмальных молекул, приводящее к ослаблению мест связывания для взаимодействия с молекулами воды через водородные связи. Это вызывает возрастание степени разрушения водородных связей, обеспечивающих внутреннюю структуру молекул крахмала. Поэтому нагревание крахмала в воде способствует набуханию и растворению крахмала (главным образом амилозы), что приводит к значительному увеличению вязкости.
Заметное набухание крахмала начинается при температуре около 60 °С с некоторыми колебаниями в ту и другую сторону у разных видов крахмала. Однако в начальной фазе набухания высвобождение растворимых веществ относительно невелико. Оно увеличивается с повышением температуры. Нагревание до 100 °С при избыточном количестве воды приводит к полной утрате упорядоченности, что подтверждают результаты измерения двойного лучепреломления.
При повышении температуры зерна крахмала деформируются, и растворимый крахмал (главным образом амилоза) оказывается в растворе. Увеличение вязкости объясняется поступлением в воду растворенной амилозы и поглощением воды оставшимися после ее выделения зернами крахмала.
Изменения, происходящие в крахмале после исчезновения двойного лучепреломления, называются клейстеризацией, а температура, при которой это явление происходит, называется температурой клейстерязации. В процессе клейстеризации происходит разрушение нативной структуры крахмальных зерен, вызываемое набуханием. Отмечается, что крупные зерна крахмала клейстеризуются при более низкой температуре, чем мелкие. Поскольку этот процесс протекает неодновременно у всех зерен крахмала, фиксируют начальную и конечную температуры клейстеризации.
Образующийся в процессе нагревания крахмала клейстер представляет собой коллоидную систему (крахмальную дисперсию), в которой дисперсной фазой являются набухшие зерна крахмала, а дисперсионную среду образует растворенный в воде крахмал (главным образом амилоза). Вязкость крахмальной дисперсии тесно связана с объемной долей и деформируемостью диспергированных набухших зерен крахмала. При этом вязкость непрерывной фазы и взаимодействие между фазами определяют реологические свойства всей системы.
Гелеобразование и ретроградация
При охлаждении крахмального клейстера, содержание крахмала в котором превышает критические концентрации, происходит агрегирование амилозных цепей, приводящее к образованию регулярной сети, удерживающей в своей структуре всю воду.
На макроскопическом уровне это проявляется в увеличении вязкости и образовании кинетически стабильного в неравновесном состоянии геля.
Система проявляет макроскопическое гелеобразование при условии наличия значительного количества амилозы в непрерывной фазе, а это означает, что она должна быть высвобождена из зерен крахмала без нарушения их целостности. Поэтому длительное кипячение и интенсивное перемешивание крахмального клейстера, вызывающие дезинтеграцию крахмальных зерен с переходом в непрерывную фазу амилопектина, препятствуют гелеобразованию. Крахмальные гели представляют собой амилозные сети, в которые вкраплены набухшие зерна, богатые амилопектином.
Гелеобразующая способность при охлаждении крахмальных клейстеров характеризуется его критической концентрацией гелеобразования, причем уровень ККГ зависит как от вида крахмала, так и от условий среды гидратации. При низких концентрациях крахмала разветвленность структуры амилопектина препятствует образованию гелей.
Взаимодействие цепей крахмала в процессе длительного хранения гелей приводит к образованию кристаллов. Процесс кристаллизации крахмальных цепей в геле называется ретроградацией. Область кристалличности отличается от некристаллизованной области коэффициентом преломления, поэтому в процессе ретроградации гель постепенно теряет свою прозрачность. Прочность гелей возрастает, они становятся твердыми и резиноподобными.
Крахмальные гели можно рассматривать как разветвленные сети, которые удерживаются вместе поперечными связями и содержат большой объем воды в качестве растворителя. Объемные свойства гелей зависят от вклада различных структурных элементов и их взаимодействия между собой. Манипулирование одним или несколькими структурными уровнями предоставляет различные возможности для регулирования текстуры пищевого продукта, содержащего крахмал.
Декстринизация крахмала
В процессе приготовления кулинарной продукции крахмал подвергается воздействию высоких температур (свыше 100С) и действию ферментов, в результате чего происходит его деструкция.
Процесс термического расщепления сухого крахмала называется декстринизацией, а ферментативного расщепления – ферментативным гидролизом.
Декстринизация крахмала начинается при температуре около 130 °С и остаточном содержании влаги не более 3 %. Дальнейшее повышение температуры приводит к ускорению расщепления полисахаридных молекул, необратимому отделению воды, изменению структуры углеводов.
Наряду с декстринами образуются также летучие вещества (углекислый газ, окись углерода, пары воды и др.). Декстринизация сопровождается разрушением нативной структуры крахмальных зерен.
В начальный период процесса преобладает реакция расщепления полисахаридов, сопровождаемая увеличением редуцирующей способности. С увеличением продолжительности декстринизации происходит ускорение процесса рекомбинации структуры полисахаридов и образования молекул декстрина.
В процессе декстринизации крахмала растет его растворимость и цветность, падает вязкость дисперсий.
Чем выше температура, до которой нагревается крахмал, и продолжительнее этот процесс, тем больше образуется растворимых веществ.
Степень декстринизации разных видов крахмала при нагревании неодинакова. Наименее устойчивым к действию сухого нагрева является картофельный крахмал, а наиболее стойкими- зерновые крахмалы (пшеничный, кукурузный).
В кулинарной практике для приготовления белых и красных соусов муку предварительно пассеруют, одной из целей которого является частичная декстринизация крахмала. При соединении полученных пассеровок с водой и последующей варке приготовленных суспензий образуются клейстеры с более низкой вязкостью по сравнению с использованием не прогретой муки. Соусы получаются эластичные, приятного вкуса и аромата.
Поскольку для получения белой пассеровки мука прогревается до 120 °С, то крахмал подвергается незначительной деструкции и вязкость белых соусов существенно выше, чем красных, так как для их приготовления мука прогревается до 150...160 °С, что способствует большей декстринизации крахмала и, как следствие, образованию большего количества растворимых веществ и значительному снижению вязкости получаемых клейстеров.
Ферментативный гидролиз крахмала.
Ферменты, осуществляющие гидролиз крахмала, относятся к подклассу гликозидаз. Представителями этой группы амилолитических ферментов являются а- и (3-амилазы, глюкоамилаза и др. Под действием названных ферментов происходит гидролиз крахмала с образованием декстринов и сахаров, соотношение между которыми зависит от вида фермента и условий его действия.
Продукты ферментативного расщепления крахмала оказывают большое влияние на качество мякиша выпеченных мучных кулинарных и булочных изделий из дрожжевого теста.
В сырье (муке, дрожжах) могут содержаться собственные эндогенные амилолитические ферменты (а- и (3-амилазы), или они могут вводиться отдельно в тесто для интенсификации ферментативного расщепления крахмала.
С какой целью производится модификация крахмалов? Назовите типы модифицированных крахмалов.
Модифицированные крахмалы в отличие от нативных растительных крахмалов (пищевые продукты) относятся к пищевым добавкам. Это продукты фракционирования, деструкции и различных модификаций нативных крахмалов.
Изменить строение нативных крахмалов в нужном направлении можно целенаправленной модификацией, применяя для этого различные способы обработки (физические, химические, биохимические).
Основными типами модификации являются набухание (преклейсте- ризация), деполимеризация, стабилизация и поперечное сшивание.
Набухающие крахмалы получают физической модификацией нативного крахмала с формированием способности набухать и растворяться в холодной воде с образованием клейстеров. Физические превращения достигаются путем предварительной быстрой клейстеризации водной суспензии крахмала и последующего высушивания клейстера в тонком слое. Крахмальные молекулы при этом не претерпевают существенной деструкции. Набухающие крахмалы используют для приготовления быстрорастворимых супов, соусов, салатных заправок, десертов, кондитерских смесей, сдобного теста, содержащего ягоды, которые при отсутствии стабилизатора оседают на дно до начала выпечки.
Расщепленные крахмалы получают деполимеризацией, применяя для этого физические и химические воздействия, в результате которых получаются более короткие молекулярные цепи. В зависимости от характера воздействия получают декстины, гидролизованные крахмалы и окисленные крахмалы.
Физическое воздействие заключается в сухом нагреве нативного крахмала в присутствии кислотных катализаторов или без них, в результате которого образуются декстрины разного цвета (белого или желтого) в зависимости от условий термообработки. Эти крахмалы обладают повышенной стойкостью к внешним воздействиям.
В результате обработки крахмальных суспензий растворами кислот или амилолитических ферментов (амилаз) получаются гидролизованные крахмалы, которые используют в производстве кондитерских изделий (желе, пастилы и др.).
Окисленные крахмалы — результат действия окислителей (перманганата калия, перекиси водорода, солей йодной кислоты и др.) с образованием крахмалов с более короткими молекулярными цепями. Эти крахмалы используют для стабилизации структуры мороженого, при производстве мармеладов, в хлебопечении.
Стабилизированные крахмалы. Стабилизация является важнейшей модификацией крахмалов, целью которой является предотвращение ретроградации и за счет этого увеличение срока годности благодаря устойчивости к изменениям температуры: циклам замораживания — оттаивания. Эту группу составляют этерифицированные крахмалы, включающие сложные эфиры, полученные ацетилированием (уксусной кислотой, уксусным ангидридом и др. реагентами) и фосфори- лированием, а также простые эфиры, получаемые взаимодействием крахмала с окисью пропилена, — ги дро кс и п ро п и л крахм ал ы.
Фосфатные крахмалы применяют для приготовления майонезов, соусов, кремов, продуктов детского и диетического питания. Клейстеры таких крахмалов стабильны к замораживанию, поэтому их используют для стабилизации и загущения л пищевых продуктов, сохраняемых в замороженном виде.
Сшитые крахмалы. Поперечное сшивание полимерных цепей является важнейшей химической модификацией, оно выражается в замене водородных связей между цепями крахмала более сильными, постоянными ковалентными связями, благодаря которым замедляется набухание крахмальных зерен, что препятствует расщеплению молекулы при химическом и физическом воздействии или в процессе приготовления кулинарной продукции. Таким образом, крахмальные зерна имеют на молекулярном уровне укрепляющие его, произвольно расположенные поперечные связи (не более одной на каждую тысячу глюкопиранозных остатков в молекуле крахмала). С возрастанием поперечных сшивок крахмал становится более устойчивым к желированию.