Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Методика обучения решению задач с прямо пропорциональными и обратно пропорциональными величинами




Задача – это сформулированный словами вопрос, ответ на который можно получить, выполнив алгебраические операции. Задачи с пропорциональными величинами для младших школьников представляют особую сложность. Одна из причин возникающих у детей трудностей в процессе решения этих задач заключается в том, что понятие «пропорциональная зависимость» не является предметом специального изучения и усвоения. Связи между пропорциональными величинами раскрываются с помощью решения простых задач на нахождения одной из величин по данным, соответствующим значениям двух других величин (например, задача на нахождение стоимости по известным цене и количеству). Поэтому при решении простой задачи с пропорциональными величинами целесообразно использовать те приёмы, которые способствуют формированию у учащихся представлений о пропорциональной зависимости величин:

a) изменения одного из данных задачи.

b) сравнение результатов решения задач, в которых изменено одно из данных.

c) интерпретация задачи в виде схемы, запись задачи в таблице.

d) анализ текстовых задач с недостающими и лишними данными.

Для того чтобы дети не подходили формально к решению этих задач, необходимо варьировать в их сюжетах постоянную величину. Тогда запись задачи в таблице и её схематическая интерпретация будут восприниматься ребёнком с необходимостью активизировать его мыслительную деятельность. В противном случае он будет ориентироваться на образец. С самого начала знакомства с задачей нужно вести целенаправленную работу по формированию учащихся умение анализировать текст задачи, выявлять в нем математические отношения, устанавливать взаимосвязь между данными и искомыми величинами и соотносить текстовую и схематическую модель задачи.

Для выделения в тексте задачи пропорциональных величин, можно использовать таблицу, в которой верхняя часть может заменяться карточками с названиями различных величин (длинна одного куска проволоки, количество кусков, общая длинна; V; t; S; время чтения одной страницы, количество страниц, общее время; масса одного ящика, количество ящиков масса и т д.). Если такие карточки заготовлены заранее, то учащиеся могут сами выбрать те из них, названия которых соответствуют величинам, рассматриваемых в задачи, и приготовить таблицу к работе, а затем самостоятельно заполнить её.

Расход ситца на одну наволочку

Количество наволочек

Общий расход материала

Одинаковый

8 н.

24 м

 

?

15 м.

Рассмотрим, например, задачу на нахождение 4го пропорционального: "Из 24 метров ситца сшили 8 наволочек. Сколько таких же наволочек можно сшить из 15 м. ситца".

В эту составную задачу входят 2 простые задачи:

1. Из 24 метров ситца сшили 8 наволочек. Сколько ситца понадобится для шитья одной наволочки?

2. Сколько таких же наволочек можно сшить из 15 м. ситца, если на шитьё одной наволочки нужно 3 м?

При решении задач с пропорциональными величинами полезно использовать схемы.

Обозначив отрезками, общий расход материала 24 м и 15 м, дети обозначают маленькими отрезками расход материала на одну наволочку.

Анализируя схему, необходимо обратить внимание учащихся на то, что один и тот же отрезок одновременно обозначает и количество метров, и количество наволочек (чем больше материи, тем больше наволочек; чем меньше отрезок, тем меньше наволочек.). Использование схем при решении задач на нахождение 4го пропорционального поможет учащимся самостоятельно найти способ решения таких видов задач, как задачи на пропорциональное деление и задачи на нахождение неизвестного по двум разностям.

На автозаправочной станции первый водитель залил в бак 25 л бензина, второй 40 л. того же бензина. Сколько заплатил за бензин каждый водитель, если вместе они заплатили 715 руб.?

На автозаправочной станции первый водитель залил в бак 25 л. бензина, второй 40 л того же бензина. Первый заплатил на 165 руб. меньше второго. Сколько заплатил за бензин каждый водитель?

 





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 1691 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2230 - | 2116 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.