Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Теореме Чебышева. Теорема Бернулли. ЦПТ




 

Теорема (Чебышева): Если независимы и существует С > 0, такая что , К = 1, 2, …, n, тогда :

Доказательство:

Рассмотрим и применим к СВ второе неравенство Чебышева.

.

.

В силу аддитивного свойства дисперсии, получаем

,

g.

Следствие: Если независимы и одинаково распределены, т.е. , а , где k = 1, …, n, тогда

.

Замечание. Предельные утверждения, сформулированные в теореме Чебышева и следствии к этой теореме носят название закона больших чисел (ЗБЧ). ЗБЧ утверждает, что с вероятностью приближающейся при n®¥ к 1, среднее арифметическое независимых слагаемых при определенных условиях становятся близким к константе.

Из утверждения последнего следствия получаем ЗБЧ в схеме Бернулли.

Теорема (Бернулли): Пусть – число успехов при n независимых испытаниях с вероятностью 0 < p < 1 в каждом испытании, тогда :

.

Доказательство: Представим в виде суммы независимых СВ , где , или при i -ом испытании произошел успех и , если при i -ом испытании произошел неуспех.

.

Применяя следствие к теореме Чебышева, получаем утверждение к теореме Бернулли.

Понятие о теореме Ляпунова. Формулировка центральной предельной теоремы (ЦПТ).

Известно, что нормально распределенные СВ широко распространены на практике, объяснение дал Ляпунов (ЦПТ).

Если СВ Х представляет собой сумму очень большого числа взаимно независимых СВ влияние каждой из которых на всю сумму ничтожно мало, то СВ Х имеет распределение близкое к нормальному.

Приведем формулировку ЦПТ без доказательства.

Теорема(ЦПТ): Если СВ в последовательности , n = 1, 2, … независимы, одинаково распределены и имеют конечные , , то :

где – стандартизованное среднее арифметическое, n -независимых СВ в последовательности.

Замечание

Следствиями ЦПТ являются локальная и интегральная теоремы Муавра-Лапласса.

 

 

Общее: и для 50 и для 51:

Пусть неизвестная функция генеральной совокупности зависит от некоторого параметра . Нужно по наблюдениям оценить параметр. Для построения оценок используются статистики – функции от выборочных значений.

Примеры статистик. .

Эта оценка .

Будет рассматриваться, как приближенное значение параметра . Замечание. Как правило, для оценки параметра можно использовать несколько статистик, получая при этом различные значения параметра . Как измерить «близость» оценки к истинному значению ? Как определить качество оценки? Комментарий: Качество оценки определяется не по одной конкретной выборке, а по всему мыслимому набору конкретных выборок, т.е. по случайному выборочному вектору , поэтому для установления качества полученных оценок моментов , следует во всех этих формулах заменить конкретные выборочные значения на СВ Xi.

; ; .

Качество оценки устанавливают, проверяя, выполняются ли следующие три свойства (требования).Требования, предъявляемые к точечным оценкам:

1. Несмещенность, т.е. .

Это свойство желательно, но не обязательно. Часто полученная оценка бывает существенной, но ее можно поправить так, что она станет несмещенной.

Иногда оценка бывает смещенной, но асимптотически несмещенной, т.е. .

2. Состоятельность, т.е. .

Это свойство является обязательным. Несостоятельные оценки не используются.

3. Эффективность.

а) Если оценки и – несмещенные, то и .

Если , то оценка более эффективна, чем .

б) Если оценки и – смещенные, тогда и .

Если , то оценка более эффективная, чем .

Где – средний квадрат отклонения оценки.

Рассмотрим использование этих свойств на примерах выбора оценок МО и дисперсии:

50. Выборочное среднее: является несмещенной и состоятельной оценкой МО генеральной совокупности (X1 ,…, Xn), причем каждое Xi совпадает с m и s 2.

а) Несмещенность. По определению выборочного вектора

, причем Xi – независимые в совокупности СВ, тогда вычислим

M[Xсред]=M[(1/n)åXi]=(1/n)M[åXi]=

(1/n)åM[Xi]=(1/n)nm g.

D[Xсред]=D[(1/n)åXi]=(1/n2)D[åXi]=

(1/n2)åD[Xi]=(1/n)ns2=s2/n

б) Состоятельность Воспользуемся неравенством Чебышева:

Применим это неравенство к

При n ®¥ ,что и доказывает состоятельность .

 





Поделиться с друзьями:


Дата добавления: 2016-09-06; Мы поможем в написании ваших работ!; просмотров: 333 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2217 - | 2173 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.