Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Г) Графическая обработка результатов




Выбор координатных осей. По оси абсцисс всегда откладывается аргумент, по оси ординат – функция.

Выбор масштаба. При выборе масштаба необходимо придерживаться следующих рекомендаций:

1. Шкалы на всех осях должны легко читаться, поэтому одна клеточка миллиметровой бумаги должна соответствовать удобному числу единиц измеряемой величины (1, 2, 5, 10….).

2. Экспериментальные точки не должны сливаться друг с другом.

3. Масштабы вдоль осей следует выбирать так, чтобы основная часть графика имела наклон, близкий к 45º, и лежала в средней части между осями.

4. Если на графике необязательно иметь начало координат, начало, и конец разметки по осям должны соответствовать минимальным и максимальным значениям аргумента и функции.

5. Десятичные множители удобнее отнести к единице измерения, тогда деления на осях будут помечены цифрами 1; 2; 3 и т. д., а не 10000; 20000 или 0,001; 0,002.

Построение графиков. На график наносятся все полученные в измерениях точки (выносные линии не проводятся). Через экспериментальные точки проводится наилучшая плавная кривая. Непосредственное соединение экспериментальных точек ломаной линией не допускается. Точки должны располагаться как можно ближе к кривой так, чтобы по обе стороны от неё находилось по возможности одинаковое число точек.

Нанесение ошибок на график. Ошибка в экспериментальном значении указывается в виде крестиков, размеры которых в выбранном масштабе дают удвоенное значение погрешностей в этом масштабе. Кривая графика должна пересекать прямоугольники, образованные крестиками погрешностей.

Оформление графиков.

 
 


Рисунок 1 – Оформление графиков

Каждый график выполняется на миллиметровой бумаге, снабжается заголовком, содержащим точное описание зависимости, показываемой на нём, и вклеивается в отчёт.

д) Основные правила приближенных вычислений.

Значащими цифрами числа называются все его цифры, кроме нуля, если он стоит в начале. Пример: 0,03010 – 4 значащие цифры.

Общее правило – при вычислении сумм, разностей, произведений, частных результат не должен содержать больше значащих цифр, чем наименее точное из слагаемых, сомножителей и т. д.

При вычислении функций ограничиваются числом значащих цифр аргумента. Если результат вычисления является промежуточным и используется в дальнейших вычислениях, необходимо сохранить в нем на одну значащую цифру больше, чем это требуется предыдущим правилом. Если в вычисляемое выражение входят постоянные типа π, γ, константы приборов и т. п., следует для них брать значащих цифр на одну больше, чем в самом неточном из участвующих в выражениях чисел. Это делается для того, чтобы вычисления с постоянными величинами не вносили дополнительные ошибки.

Если это по каким-либо причинам невозможно (например, значения постоянной прибора недостаточно точно известны), то соответствующую константу в выражении для физической величины следует рассматривать наравне с другими переменными, и в окончательное выражение для физической величины будет входить погрешность соответствующей константы.

Абсолютную погрешность следует всегда выражать в тех же единицах измерения, что и саму измеряемую величину. Например, L = (1,572 ± 0,004) м, но не L = (1,572 ± 4) мм. Число и его погрешность всегда записывается так, чтобы их последние цифры принадлежали к одному и тому же десятичному разряду. Нельзя писать 24 ± 0,2, или 21,62 ± 0,3. Правильная запись 24,0 ± 0,2 или 21,6 ± 0,3. Нуль писать так же обязательно, как и любую другую цифру: 25,30 ± 0,02, но не 25,3 ± 0,02.

Приближенные числа рекомендуется представлять в нормальном виде, для чего первая значащая цифра записывается в разряде единиц, а остальные – в разряде десятых, сотых и т.д. Например: м = (3,56 ± 0,4) нм

Вычисленные погрешности прямых и косвенных измерений должны округляться до одной значащей цифры, за исключением тех случаев, когда она равна 1 – в этом случае сохраняется две значащих цифры, причём вторая из них округляется до 5.

При записи констант и других заданных чисел часто применяется неявный способ указания их погрешностей: выписываются только надёжно известные
значащие цифры числового значения, а ненадёжные отбрасываются с применением обычных правил округления. Например, запись L = 1,2 м читается как
L = (1,20 ± 0,05) м и так далее. Иначе говоря, погрешность в этом случае составляет половину невыписанного разряда.

 

е) Кинематика материальной точки.

Материальной точкой (частицей) называется тело, размерами, структурой и внутренними движениями которого в данных условиях при описании движения можно пренебречь.

Системой отсчёта (СО) называется совокупность тела отсчёта, относительно которого рассматривается движение других тел, линеек и часов. Прежде чем говорить о движении и его описывать, нужно выбрать СО.

Кинематика изучает геометрические формы и типы движений безотносительно к причинам, их вызывающим. Все СО кинематически эквивалентны в смысле возможности выбрать любую из них для описания движения.





Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 419 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2321 - | 2074 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.