Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тема 12. (занятие 15) Система одновременных уравнений




Разберите пример.

Изучается модель вида

где – расходы на потребление в период ,

– совокупный доход в период ,

– инвестиции в период ,

– процентная ставка в период ,

– денежная масса в период ,

– государственные расходы в период ,

– расходы на потребление в период ,

инвестиции в период .

Первое уравнение – функция потребления, второе уравнение – функция инвестиций, третье уравнение – функция денежного рынка, четвертое уравнение – тождество дохода.

Модель представляет собой систему одновременных уравнений. Проверим каждое ее уравнение на идентификацию.

Модель включает четыре эндогенные переменные и четыре предопределенные переменные (две экзогенные переменные – и и две лаговые переменные – и ).

Проверим необходимое условие идентификации для каждого из уравнений модели.

Первое уравнение: содержит две эндогенные переменные и и одну предопределенную переменную . Таким образом, , а , т.е. выполняется условие . Уравнение сверхидентифицируемо.

Второе уравнение: включает две эндогенные переменные и и одну экзогенную переменную . Выполняется условие . Уравнение сверхидентифицируемо.

Третье уравнение: включает две эндогенные переменные и и одну экзогенную переменную . Выполняется условие . Уравнение сверхидентифицируемо.

Четвертое уравнение: . Оно представляет собой тождество, параметры которого известны. Необходимости в идентификации нет.

Проверим для каждого уравнения достаточное условие идентификации. Для этого составим матрицу коэффициентов при переменных модели.

 

 
I уравнение –1          
II уравнение   –1        
III уравнение     –1      
Тождество       –1        

В соответствии с достаточным условием идентификации ранг матрицы коэффициентов при переменных, не входящих в исследуемое уравнение, должен быть равен числу эндогенных переменных модели без одного.

Первое уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид

 

 
II уравнение –1    
III уравнение   –1    
Тождество          

Ранг данной матрицы равен трем, так как определитель квадратной подматрицы не равен нулю:

.

Достаточное условие идентификации для данного уравнения выполняется.

Второе уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид

 
I уравнение –1    
III уравнение      
Тождество   –1      

Ранг данной матрицы равен трем, так как определитель квадратной подматрицы не равен нулю:

.

Достаточное условие идентификации для данного уравнения выполняется.

Третье уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид

 
I уравнение –1      
II уравнение   –1    
Тождество          

Ранг данной матрицы равен трем, так как определитель квадратной подматрицы не равен нулю:

.

Достаточное условие идентификации для данного уравнения выполняется.

Таким образом, все уравнения модели сверхидентифицируемы. Приведенная форма модели в общем виде будет выглядеть следующим образом:





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 378 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2338 - | 2092 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.