Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тема №8. Эконометрическое моделирование в пакете Excel




Задания

Необходимо выполнить разобранные примеры на компьютере.

Пример 1. Предположим, что застройщик оценивает стоимость группы небольших офисных зданий в традиционном деловом районе. Застройщик может использовать корреляционный анализ для установления связи между выбранными переменными.

Переменная Смысл переменной

y Оценочная цена здания под офис, тыс. $;

x1 Общая площадь в квадратных метрах;

x2 Количество офисов;

x3 Количество входов;

x4 Время эксплуатации здания в годах.

 

В этом примере предполагается, что существует линейная зависимость между каждой независимой переменной (x1, x2, x3 и x4) и зависимой переменной (y), то есть ценой здания под офис в данном районе.

Застройщик наугад выбирает 11 зданий из имеющихся 1500 и получает следующие данные.

х1 х2 х3 х4 у
         
         
    1,5    
         
         
         
    1,5    
         
         
         
         

"Пол-входа" (1/2) означает вход только для доставки корреспонденции.

Необходимо установить степень тесноты связи между объясняющими переменными и объясняемыми.

Выполнение.

Заполним данными диапазон A1:E12.

1. Для нахождения парной регрессии (например, между площадью и ценой) используем функцию КОРРЕЛ(), указав в окне диалога диапазоны A2:A12 и E2:E12. Полученное значение 0,32 свидетельствует о наличии слабой линейной связи между выбранными переменными.

2. Чтобы найти коэффициенты корреляции между всеми парами переменных воспользуемся средством Корреляция из Анализа данных. В окне диалога необходимо указать входной интервал, наличие меток (подписей к данным) в первой строке, название листа, на котором будут отображены результаты анализа.

Окно диалога «Корреляция».

  х1 х2 х3 х4 у
х1          
х2 0,22        
х3 0,62 0,31      
х4 0,22 -0,05 -0,05    
у 0,32 0,88 0,51 -0,45  

После выполнения анализа из отчета можно увидеть, что в наибольшей степени цена дома определяется количеством офисов в нем (коэффициент корреляции 0,88). Отрицательно на цене сказывается возраст дома, – чем он больше, тем дом дешевле (коэффициент корреляции -0,45). Можно также сделать вывод о существующей линейной зависимости площади дома и количества входов в него – коэффициент корреляции 0,62.

Линейная регрессия.

Регрессионный анализ используется, если две исследуемые переменные не равноправны, то есть изменение одной из переменных служит причиной для из­менения другой. Например, рост дохода ведет к увеличению по­требления; снижение процентной ставки увеличивает инвестиции; увеличение валютного курса сокращает чистый экспорт. Это - тот случай, когда должно быть оценено уравнение регрессии y=f(x). Уравнение регрессии - это формула статистической связи между переменными. Если эта формула линейна, то речь идет о линейной регрессии. Формула статистической связи двух переменных называ­ется парной регрессией, зависимость от нескольких переменных - множественной регрессией.

Выбор формулы связи переменных называется спецификацией уравнения регрессии; в данном случае выбрана линейная формула. Однако до тех пор, пока не оценены количественные значения параметров, не проверена надежность сделанных оценок, эта формула остается лишь гипотезой. Оценка значений параметром выбранной формулы статистической связи переменных называется параметризацией уравнения регрессии.

Любую прямую можно задать ее наклоном и y-пересечением. Обозначим наклон через a1, а Y-пересечение через a0. Тогда уравнение парной регрессии примет вид y = a1× x + a0

Если известны значения b1 и b0, то можно вычислить любую точку на прямой, подставляя значения y или x в уравнение.

Оценки коэффициентов a в случае парной регрессии рассчитываются по формуле:

;

Проверка общего качества уравнения регрессии. Коэффициент детерминации R2

Для анализа общего качества оцененной линейной регрессии ис­пользуют обычно коэффициент детерминации R2, называемый так­же квадратом коэффициента множественной корреляции. Для слу­чая парной регрессии это квадрат коэффициента корреляции пере­менных х и y. Коэффициент детерминации рассчитывается по фор­муле

, где еi = yi – a1xi-a0 – разница между теоретическим и реальным значением yi.

Он характеризует долю вариации (разброса) зависимой перемен­ной, объясненной с помощью данного уравнения. В качестве меры разброса зависимой переменной обычно используется ее дисперсия, а остаточная вариация может быть измерена как дисперсия откло­нений вокруг линии регрессии. Если числитель и знаменатель вы­читаемой из единицы дроби разделить на число наблюдений n, то получим, соответственно, выборочные оценки остаточной диспер­сии и дисперсии зависимой переменной у. Отношение остаточной и общей дисперсий представляет собой долю необъясненной диспер­сии. Если существует статистически значимая линейная связь вели­чин х и у, то коэффициент R2 близок к единице[1].





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 756 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент всегда отчаянный романтик! Хоть может сдать на двойку романтизм. © Эдуард А. Асадов
==> читать все изречения...

2431 - | 2176 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.