Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Гипотеза о гомоскедастичности принимается




—для проверки данной гипотезы в данной задаче недостаточно данных

Модели временных рядов (Задачи)

На основе помесячных данных за последние 6 лет была построена аддитивная модель временного потребления тепла. Скорректированные значения сезонной компоненты приведены в таблице:

Январь + 30 Май - 20 сентябрь - 10
февраль + 25 Июнь - 34 октябрь + 12
март ? Июль - 42 ноябрь +22
апрель - 2 Август - 18 декабрь +28

Уравнение тренда выглядит так:

Значение сезонной компоненты за март, а также точечный прогноз потребления тепла на 1 квартал следующего года равны:

+9; 1290,4

—-9; 1290,4

—9; 1226,4

—12; 1226,4

 

На основе помесячных данных за последние 5 лет была построена аддитивная модель временного потребления тепла. Скорректированные значения сезонной компоненты приведены в таблице:

 

Январь + 17 май - 20 сентябрь - 10
февраль + 15 июнь - 34 октябрь ?
март + 10 июль - 42 ноябрь +22
апрель - 4 август - 18 декабрь +27

Уравнение тренда выглядит так:

Значение сезонной компоненты за октябрь, а также точечный прогноз потребления тепла на 1 квартал следующего года равны:

+37; 1615,2

—-37; 1615,2

—37; 1845

—4; 1845

 

На основе помесячных данных за последние 8 лет была построена аддитивная модель временного потребления тепла. Скорректированные значения сезонной компоненты приведены в таблице:

Январь + 42 Май - 10 сентябрь - 10
февраль + 21 Июнь - 50 октябрь + 12
март ? Июль - 35 ноябрь +22
апрель - 1 Август - 16 декабрь +28

Уравнение тренда выглядит так:

Значение сезонной компоненты за март, а также точечный прогноз потребления тепла на 1 квартал следующего года равны:

+-3; 1611,6

—3; 1617,6

—3; 1526,4

—7; 1226,4

 

На основе поквартальных данных построена мультипликативная модель некоторого временного ряда. Скорректированные значения сезонной компоненты равны:

I квартал – 1,6

II квартал – 0,8

III квартал – 0,7

IV квартал -?

Уравнение тренда имеет вид:

Значение сезонной компоненты за IV квартал и прогноз на II и III кварталы следующего года равны:

И 4,55

—1,00; 10,72 и 5,28

—0,90; 4,55 и 5,28

—0,80; 5,28 и 10,72

 

На основе поквартальных данных построена мультипликативная модель некоторого временного ряда. Скорректированные значения сезонной компоненты равны:

I квартал – 1,5

II квартал –?

III квартал – 0,6

IV квартал – 0,8

Уравнение тренда имеет вид:

Значение сезонной компоненты за II квартал и прогноз на II и III кварталы следующего года равны:

И 8,82

—1,20; 21,75 и 16,06

—1,10; 8,82 и 16,06

—1,00; 16,06 и 21,75

 

На основе поквартальных данных построена мультипликативная модель некоторого временного ряда. Скорректированные значения сезонной компоненты равны:

I квартал – 1,2

II квартал – 0,8

III квартал –?

IV квартал – 1,4

Уравнение тренда имеет вид:

Значение сезонной компоненты за III квартал и прогноз на II и III кварталы следующего года равны:

И 3,12

—0,70; 6,72 и 4,32

—0,60; 3,12 и 4,32

—0,50; 4,32 и 6,72

 

На основе поквартальных данных построена мультипликативная модель некоторого временного ряда. Скорректированные значения сезонной компоненты равны:

I квартал – 1,2

II квартал – 0,9

III квартал – 0,5

IV квартал -?

Уравнение тренда имеет вид:

Значение сезонной компоненты за IV квартал и прогноз на II и III кварталы следующего года равны:

И 0,85

—1,60; 7,48 и 4,57

—1,40; 1,36 и 4,57

—1,30; 2,28 и 7,48

 

На основе поквартальных данных построена мультипликативная модель некоторого временного ряда. Скорректированные значения сезонной компоненты равны:

I квартал – 1,5

II квартал – 0,7

III квартал –?

IV квартал – 1,2

Уравнение тренда имеет вид:

Значение сезонной компоненты за III квартал и прогноз на II и III кварталы следующего года равны:

И 3,78

—0,70; 6,72 и 4,55

—0,60; 3,78 и 4,55

—0,50; 4,55 и 6,72

 

На основе квартальных данных объемов продаж 1995 – 2000гг. была построена аддитивная модель временного ряда. Трендовая компонента имеет вид

Показатели за 2000 г. приведены в таблице:

Квартал Фактический объем продаж Компонента аддитивной модели
трендовая сезонная случайная
    -9
    +4
     
  S4
ИТОГО:        

Отдельные недостающие данные в таблице равны:

+

 

На основе квартальных данных объемов продаж 1995 – 2000гг. была построена аддитивная модель временного ряда. Трендовая компонента имеет вид

Показатели за 1999 г. приведены в таблице:

Квартал Фактический объем продаж Компонента аддитивной модели
трендовая сезонная случайная
    -11
    +5
     
  S4
Итого        
             

 

Отдельные недостающие данные в таблице равны:

+

 

На основе квартальных данных объемов продаж 1995 – 2000гг. была построена аддитивная модель временного ряда. Трендовая компонента имеет вид

Показатели за 1999 г. приведены в таблице:

Квартал Фактический объем продаж Компонента аддитивной модели
трендовая сезонная случайная
    -11
    +5
     
  S4
Итого        
           

Отдельные недостающие данные в таблице равны:

+

 

На основе квартальных данных объемов продаж 1995 – 2000гг. была построена аддитивная модель временного ряда. Трендовая компонента имеет вид

Показатели за 1999 г. приведены в таблице:

Квартал Фактический объем продаж Компонента аддитивной модели
трендовая сезонная случайная
    -11
    +5
     
  S4
Итого        
           

Отдельные недостающие данные в таблице равны:

+

 

На основе квартальных данных объемов продаж 1996 – 2000гг. была построена аддитивная модель временного ряда. Трендовая компонента имеет вид

Показатели за 1999 г. приведены в таблице:

Квартал Фактический объем продаж Компонента аддитивной модели
трендовая сезонная случайная
    -10
    +3
     
  S4
ИТОГО:        

Отдельные недостающие данные в таблице равны:

+

 

На основе квартальных данных объемов продаж 1993 – 2002гг. была построена аддитивная модель временного ряда. Трендовая компонента имеет вид

Показатели за 1997 г. приведены в таблице:

Квартал Фактический объем продаж Компонента аддитивной модели
трендовая сезонная случайная
    -6
    +8
     
  S4
ИТОГО:        

Отдельные недостающие данные в таблице равны:

+

 

 

На основе помесячных данных за последние 4 года была построена аддитивная модель временного потребления тепла. Скорректированные значения сезонной компоненты приведены в таблице:

Январь + 30 май - 20 сентябрь - 10
февраль + 25 июнь - 34 октябрь ?
март + 15 июль - 42 ноябрь +22
апрель - 2 август - 18 декабрь +27

Уравнение тренда выглядит так:

Значение сезонной компоненты за октябрь, а также точечный прогноз потребления тепла на 1 квартал следующего года равны:

+7; 1315

—-7; 1315

—7; 1245

—10; 1245

 

На основе квартальных данных с 2000 г. по 2004 г. получено уравнение y = - 0,67 + 0,0098 x t1 – 5,62 x t2 + 0,044 x t3

ESS =110,3, RSS = 21,4 (ESS – объясненная сумма квадратов, RSS – остаточная сумма квадратов)

В уравнение были добавлены три фиктивные переменные, соответствующие трем первым кварталам года, величина ESS увеличилась до 120,2. Проверьте гипотезу о сезонности (α =0,05):

+гипотезу об отсутствии сезонности отвергаем, т.к. F=3,73 (>Fкр)

—гипотезу об отсутствии сезонности отвергаем, т.к. F=4,2 (>Fкр)

—гипотезу о наличии сезонности отвергаем, т.к. F=3,73 (<Fкр)

—гипотезу о наличии сезонности отвергаем, т.к. F=4,2 (<Fкр)

 

На основе квартальных данных с 1991 г. по 2004 г. получено уравнение y = - 0,55 + 0,088 x t1 – 4,77 x t2 + 5,4 x t3

ESS =90,4, RSS = 21,4 (ESS – объясненная сумма квадратов, RSS – остаточная сумма квадратов)

В уравнение были добавлены три фиктивные переменные, соответствующие трем первым кварталам года, величина ESS увеличилась до 92. Проверьте гипотезу о сезонности (α =0,05):

+гипотезу об отсутствии сезонности отвергаем, т.к. F=4,31 (>Fкр)

—гипотезу об отсутствии сезонности отвергаем, т.к. F=3,2 (>Fкр)

—гипотезу о наличии сезонности отвергаем, т.к. F=1,31 (<Fкр)

—гипотезу о наличии сезонности отвергаем, т.к. F=2,2 (<Fкр)

 

На основе квартальных данных с 2001 г. по 2003 г. получено уравнение y = - 0,55 + 1,8 x t1 – 2,7 x t2 + 3,4 x t3

ESS =115,3, RSS = 10,2 (ESS – объясненная сумма квадратов, RSS – остаточная сумма квадратов)

В уравнение были добавлены две фиктивные переменные, соответствующие двум первым кварталам года, величина ESS увеличилась до 120. Проверьте гипотезу о сезонности (α =0,05):

—гипотезу об отсутствии сезонности отвергаем, т.к. F=8,7 (>Fкр)

—гипотезу об отсутствии сезонности отвергаем, т.к. F=2,6 (>Fкр)

—гипотезу о наличии сезонности отвергаем, т.к. F=8,7 (<Fкр)

+гипотезу о наличии сезонности отвергаем, т.к. F=2,6 (<Fкр)

 

На основе квартальных данных с 2000 г. по 2002 г. получено уравнение y = 1,55 + 1,4 x t1 – 0,77 x t2 + 2,4 x t3

ESS = 82, RSS = 12 (ESS – объясненная сумма квадратов, RSS – остаточная сумма квадратов)

В уравнение были добавлены три фиктивные переменные, соответствующие трем первым кварталам года, величина ESS увеличилась до 90. Проверьте гипотезу о сезонности (α =0,05):

—гипотезу об отсутствии сезонности отвергаем, т.к. F=4,3 (>Fкр)

—гипотезу об отсутствии сезонности отвергаем, т.к. F=3,3 (>Fкр)

—гипотезу о наличии сезонности отвергаем, т.к. F=4,3 (<Fкр)

+гипотезу о наличии сезонности отвергаем, т.к. F=3,3 (<Fкр)

 

Модель зависимости объемов продаж компании от расходов на рекламу имеет вид y = - 0,67 + 4,5 x t + 3 x t-1 + 1,5 x t-2 + 0,5 x t-3

Краткосрочный, долгосрочный мультипликатор и средний лаг равны:

—краткосрочный 0,5, долгосрочный 9,5, средний лаг 2,3





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 804 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студенческая общага - это место, где меня научили готовить 20 блюд из макарон и 40 из доширака. А майонез - это вообще десерт. © Неизвестно
==> читать все изречения...

2346 - | 2304 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.