Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Монтаж пневматических и гидравлических исполнительных механизмов. Стойки и кронштейны для установки исполнительных механизмов




В качестве исполнительных механизмов в пневматических системах применяются поршневые и мембранные пневмоприводы. Поршневые отличаются от мембранных большей величиной перемещения рабочего органа. Основными элементами механизма являются мембранная пневматическая камера с кронштейном и подвижная часть. Присоединение пневматических линий к рабочим полостям механизмов осуществляются при помощи резьбовых отверстий. Гидравлические ИМ предназначены для управления рабочими органами поворотного или возвратно-поступательного движения и состоит из гидроцилиндра и узлов крепления его к фундаментной плите и к регулирующему органу. Для установки исполнительных механизмов используются стойки и кронштейны. Стойки и кронштейны изготавливаются на производственных базах, там же на конструкциях устанавливаются ИМы, пусковая аппаратура и соединительные коробки для подключения электрических проводок. В таком исполнении комплект поступает на объект монтажа и устанавливается в проектное положение. На объекте монтажа выполняется объем работ только по закреплению конструкции на опорном основании и подключению внешних электрических или трубных проводок.

Стойка СТ-3 предназначена для установки пневматических МИМ. Стойка СИМ-31 предназначена для установки МЭО с номинальным крутящим моментом 25 Н·м. Стойки СИМ-34 предназначены для установки ИМ МЭО с ном. крут.моментом 400 Н·м. Кронштейны КИМ-1-КИМ-16 на месте монтажа крепятся болтами и предназначены для установки МЭО с ном. крут. моментом на выходном валу не более 160 Н·м.

3.) Методы измерения диагностических параметров: измерение плотности, состава и структуры материала.

Измерение плотности Плотность является физической величиной, характеризующей распределение вещества по объему. Основные методы измерения плотности жидкости:1. Дилатометрические: измерения объема, длины и массы.2. Ареометрические: меры погружения поплавка; меры силы, выталкивающей погруженный поплавок; разности сил, действующих на датчик; угла поворота (или момента сил) несимметричного поплавка.3. Пикнометрические: массы мерного объема.4. Пьезометрические: давления на чувствительный элемент; давления жидкости или газа в питательных трубках; меры уровня в сообщающихся сосудах.5. Капельные: падающей капли. и др.

Распространенные методы измерения плотности пара: Метод газовых весов: основан на законе Архимеда. В термостатированном баллоне на кварцевом коромысле уравновешивают пустотелый шарик из кварцевого стекла и противовес. Изменение плотности газа, окружающего шарик, изменяет положение равновесия коромысла весов. Точность измерения 4·10-8 г/см3. Метод истечения газа через отверстие является относительным. Определение неизвестной плотности сводится к измерениям времени протекания через одно и то же отверстие равных объемов двух газов, плотность одного из которых известна; погрешность метода до 0,1%. Определение состава и структуры материала Рентгеновские методы определения состава и структуры материала. По аппаратурно-методическим признакам можно классифицировать как рентгеноспектральный и рентгеноструктурный анализы. С ущность рентгеноспектрального анализа состоит в том, что при поглощении первичного рентгеновского излучения в исследуемом образце энергия поглощенного излучения переходит в энергию ионизации вещества. По спектру характеристического излучения можно определить элементный или атомный состав вещества, а по интенсивности - концентрацию атомов данного элемента.Для проведения рентгеноспектрального анализа применяются флуоресцентные рентгеновские спектрометры, кристалл-дифракционные спектрометры и бескристальные анализаторы.Метод рентгеноструктурного анализа применяется для исследования структуры вещества по распределению в пространстве и интенсивности рентгеновского излучения, рассеянного на анализируемом образце. Сущность рентгеноструктурного анализа объясняется явлением дифракции рентгеновского излучения, основанной на взаимодействии первичного рентгеновского излучения с длиной волны порядка 10-10 м с электронами объекта исследований. Наиболее производительная аппаратура – квантометры.

 





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 699 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2194 - | 2136 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.