Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Элементы векторной алгебры и аналитической геометрии в пространстве




Векторные величины (векторы) – это такие величины, которые характеризуются не только своими числовыми значениями, но и направлением.

Для изображения векторных величин служат геометрические векторы. Геометрический вектор – это направленный отрезок.

Координатами вектора в прямоугольной системе координат называются проекции вектора на оси координат. Запись означает, что вектор имеет координаты .

Модуль вектора (его длина) вычисляется по формуле

.

Чтобы найти координаты вектора, заданного координатами точек его начала и конца надо найти разности соответствующих координат его конца и начала, т.е. если задан вектор , где , то

.

Тогда модуль вектора находится по формуле

.

Скалярным произведением двух векторов называется число, равное произведению их модулей на косинус угла между ними.

Обозначают: () или . По определению

, где .

Пусть векторы заданы аналитически:

.

Выражение скалярного произведения через координаты перемноженных векторов:

.

Косинус угла между двумя векторами можно найти по формуле

.

Векторным произведением вектора на вектор называется вектор, обозначаемый символом или , определяемый условиями:

1) модуль этого вектора равен произведению модулей перемножаемых векторов на синус угла между ними, т.е.

;

2) этот вектор перпендикулярен каждому из перемножаемых векторов, т.е. плоскости, определяемой этими векторами;

3) направлен по перпендикуляру к этой плоскости так, что векторы и составляют правую тройку (т.е. если при наблюдении с конца вектора кратчайший поворот от вектора к вектору происходит против часовой стрелки.)

 

Модуль векторного произведения численно равен площади параллелограмма, построенного на векторах сомножителях – в этом состоит геометрический смысл модуля векторного произведения:

.

Пусть даны два вектора и . Выражение векторного произведения через координаты перемножаемых векторов:

.

 

Смешанным произведением трех векторов называется число, равное скалярному произведению вектора на вектор , т.е. .

Если векторы заданы своими прямоугольными координатами , то их смешанное произведение вычисляется по формуле

.

Геометрический смысл смешанного произведения: объем параллелепипеда, построенного на 3-х некомпланарных векторах, равен абсолютной величине их смешанного произведения

.

Тогда объем треугольной пирамиды, построенной на этих же векторах, находится по формуле

.

Три точки пространства, не лежащие на одной прямой, определяют единственную плоскость. Если , три данные точки, не лежащие на одной прямой, а произвольная точка плоскости, то уравнение плоскости, проходящей через три точки, имеет вид

.

Уравнение прямой, проходящей через две точки пространства имеет вид

.

Угол между прямой и плоскостью находится по формуле

,

где коэффициенты выбирают из канонических уравнений прямой

и общего уравнения плоскости

,

где - вектор нормали к плоскости.

Условие перпендикулярности прямой и плоскости:

.

Пример

Даны вершины треугольной пирамиды Найти:

1) угол между ребрами и ;

2) площадь грани ;

3) объем пирамиды ;

4) длину высоты, опущенной из вершины на грань ;

5) уравнение высоты, опущенной из вершины на грань .

 

Решение

А 4   А 2   В А 1 А 3 Рис. 2 1) Угол между ребрами и находим с помощью скалярного произведения векторов по формуле , найдем координаты векторов тогда косинус угла между векторами .

2) Площадь грани находим с помощью векторного произведения векторов. Найдем координаты вектора , тогда площадь треугольника находим по формуле

.

Найдем векторное произведение векторов

модуль векторного произведения равен

,

откуда находим площадь треугольника

3) Объем пирамиды находим с помощью смешанного произведения векторов по формуле

,

так как выше найдены координаты векторов

,

подставим координаты векторов в формулу, получим

.

4) Для нахождения длины высоты h, опущенной из вершины на грань применим формулу

,

откуда находим

 

 

5) Общее уравнение плоскости :

,

нормальный вектор плоскости .

Уравнение высоты : .

Условие перпендикулярности прямой и плоскости: .

В нашем случае , тогда уравнение высоты имеет вид

 

Тема № 3

3.1. Раскрытие неопределенности вида .

Рассмотрим отношение функций . Пусть – бесконечно большие функции (б.б.ф.) при , отношение в этом случае называется неопределенным выражением вида . Для нахождения предела неопределенного выражения нужно избавиться от неопределенности (или раскрыть неопределенность).

Чтобы раскрыть неопределенность вида , заданную отношением двух многочленов, надо числитель и знаменатель разделить на самую высокую входящую в них степень, а затем перейти к пределу.

 

Пример 1

,

так как при каждая из дробей стремится к нулю.

Пример 2

.

Пример 3

.

Замечание. Из рассмотренных примеров видно, что предел частного двух многочленов при равен отношению коэффициентов при старших членах, если степени многочленов, стоящих в числителе и знаменателе, равны; равен нулю, если степень числителя меньше степени знаменателя; равен ¥, если степень числителя больше степени знаменателя.

3.2. Раскрытие неопределенности вида

Рассмотрим отношение функций . Пусть – бесконечно малые функции (б.м.ф.) при , отношение в этом случае называется неопределенным выражением вида .

Чтобы раскрыть неопределенность вида , заданную отношением двух многочленов, надо в числителе и знаменателе выделить критический множитель и сократить на него.

Чтобы раскрыть неопределенность вида , в которой числитель или знаменатель содержит иррациональность, следует избавиться от иррациональности, домножив числитель и знаменатель на сопряженное выражение.

 

Пример

Вычислить предел .

Решение

При числитель и знаменатель дроби стремится к нулю, т.е. имеет место неопределенность вида . Для раскрытия неопределенности числитель и знаменатель дроби умножим на сопряженное знаменателю выражение, т.е. на сумму , а квадратный трехчлен разложим на множители, найдя для этого его корни:

,

тогда,

.

Таким образом, получим:

.

 

 





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 437 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2239 - | 2072 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.