Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Принцип неопределенности Гейзенберга




В классической механике предполагалось, что координата точки и ее импульс могут быть определены одновременно с любой точностью. Попробуем понять, какие трудности возникают, если пытаться применить классические понятия к объекту, обладающему двойственной природой (частица-волна). Рассмотрим так

называемый пакет волн. Если сложить несколько волн с различными частотами, распространяющиеся в направлении х, получится сложная несинусоидальная волна [xi]. Если будет складываться очень большое число волн со всевозможными длинами, образуется волновой пакет шириной D х (см.рис.). Монохроматическая волна имеет определенную длину волны и, соответственно импульс р = h / l = const,

D р ® 0, а протяженность ее D х ® ¥. Очень узкий волновой пакет содержит множество волн, количество которых в пределе стремится к бесконечности и разброс импульсов в нем D р ® ¥ [xii], а протяженность

D х ® 0. Т.о., мы приходим к выводу, чем более точно локализован волновой пакет, тем больше оказывается неопределенность в его импульсе.

Гейзенберг выдвинул принцип неопределенности: «Существует принципиальное ограничение на точность, с которой могут быть определены физические величины, не связанное с точностью приборов». Он предложил также формулы, смысл которых в следующем.

соотношения неопределенностей для координаты и импульса [xiii] «Если измеряется координата х частицы и одновременно проекция ее импульса в направлении х - (рх), то минимальные ошибки при их одновременном измерении связаны этими соотношениями»

Существует также соотношение неопределенности, касающееся энергии и времени.

соотношения неопределенностей для энергии и времени. «Если атомная система обладает энергией Е в течение времени t, то одновременное измерение этих величин возможно лишь с точностью, определяемой данным соотношением»

Из соотношений неопределенностей следует, что чем точнее определяется одна величина, тем менее точно – другая при одновременном их измерении,. Так как очень мало, то эти ограничения существенны только в атомных масштабах.

С помощью соотношений неопределенностей можно дать простые объяснения фактам, установленным другими путями. Например.

1). Входит ли электрон в состав атомного ядра?

D х = 10-14 м Размер ядра по порядку величины
Предположим, что электрон находится в ядре. Найдем неопределенность в его импульсе и примем ее равной самому импульсу[xiv]
МэВ кинетическая энергия релятивистского электрона в ядре (считаем, что он движется как квант со скоростью с)
Из опытов по радиоактивному бета-распаду известно, что энергии вылетающих из ядра электронов значительно меньше. Следовательно, в ядре «готовых» электронов нет; электрон образуется в ядре при превращении нейтрона в протон.

2). Оценим с помощью соотношения неопределенностей энергию связи электрона в атоме водорода.

D х =0,5 10-10 м размер атома Н
импульс электрона, вычисленный с помощью соотношения неопределенности
эВ Энергия нерелятивистского электрона (1 эВ=1,6×10-19 Дж). По порядку величины совпадает с энергией, вычисленной по теории Бора

3). Найдем предел точности, с которой можно определить частоту и длину волны излучаемого света

время возбужденного атома, спустя это время электрон возвращается на нижележащую орбиту, и атом испускает квант света с энергией Е
Гц предел точности определения частоты излучения, найденный с помощью соотношения неопределенности
предел точности измерения длины световой волны для зеленого света l =(500,0000000 ± 0,0000002) нм с = 3×108 м/с – скорость света в вакууме

Уравнение Шрёдингера.

Открытие двойственной природы частиц привело к пониманию о невозможности описывать поведение микрочастиц с помощью классических представлений и законов. Стало ясно, что нельзя говорить о траектории частицы, т.е. о точном ее местоположении в любой момент времени. Появилась новая наука – квантовая механика. Вместо слова траектория частицы было введено понятие о вероятности нахождения частицы в том или ином месте пространства. Для описания поведения микрочастиц Шрёдингер (1926 г) предложил дифференциальное уравнение:

i нестационарное уравнение Шрёдингера; решение уравнения позволяет найти вероятность нахождения частицы в том или ином мете пространства
мнимая единица
M масса рассматриваемой частицы
U (x,y,z,t) потенциальная энергия частицы, зависящая в общем случае от координат и времени
оператор Лапласа (или лапласиан) краткое обозначение математической операции дифференцирования в частных производных; - набла (греч. слово nabla - арфа, символ по форме напоминает этот инструмент)
Y (x,y,z,t) пси-функция или волновая функция, физического смысла не имеет, но квадрат ее модуля êYê2 – это вероятность нахождения частицы в данном месте пространства (подробнее см. дальше – стационарное уравнение Шрёдингера)
     

Математически уравнение Шрёдингера имеет бесконечное число решений, что физически неприемлемо, поэтому на пси-функцию накладываются дополнительные условия:

1).Пси-функция должна быть:

а) конечной – вероятность не может быть больше 1,

б) непрерывной – вероятность не может внезапно оборваться,

в) однозначной – не может быть две вероятности в одной точке,

2) Производные пси-функции должны быть непрерывны,

3) Пси-функция должна подчиняться условию нормировки:

условие нормировки; смысл его в том, что вероятность обнаружить частицу во всем мыслимом пространстве равна 1.

В тех случаях, когда потенциальная энергия зависит только от координат и не зависит от времени, т.е U = U (x,y,z), пси-функцию можно представить как произведение двух функций: Y (x,y,z,t) = y (x,y,zj (t). (Y - большая буква пси,

y - малая буква пси, обе функции называются пси- или волновыми функциями.) Подставим в уравнение (i) и, разделим на (y × j).. Получим:

 

Левая часть уравнения зависит только от t, правая – только от координат, следовательно, каждая из них должна быть равна некоторой постоянной, которую мы обозначим Е.
j (t) называется временнОй частью пси-функции, со временем она затухает
         

 

Если приравнять константе Е правую часть уравнения, получим:

a стационарное уравнение Шрёдингера Е – полная энергия частицы, U – потенциальная энергия

При решении уравнения Шредингера мы

Задаем находим
U – потенциальную энергию частицы m – массу частицы y - пси-функцию (собственные функции) Е – полную энергию частицы (собственные значения)

Решение уравнения с учетом дополнительных условий, накладываемых на пси-функцию, приводит не к любым величинам энергии Е, а к дискретным:

Е1, Е2,…, Еn. В теории Бора электрон мог находиться тоже только в дискретных энергетических состояниях, но при этом была введена искусственно гипотеза о квантовании момента импульса электрона. Уравнение Шрёдингера приводит к квантованию энергии естественно, как математическое решение.

При решении оказывается, что данному энергетическому состоянию частицы могут соответствовать одна или несколько (к) пси-функций. Иначе говоря, при данной энергии Еn частица может вести себя по-разному. Тогда говорят, что уровень Еn к -кратно вырожден и обозначают пси-функцию как Если на систему воздействовать внешним, например магнитным полем, то вырождение снимается, уровень расщепляется на несколько уровней. Практически это обнаруживается в спектрах, вместо одной линии появляются несколько. Например, в спектре атома водорода на приборе с большим разрешением можно обнаружить, что почти все линии спектра являются дублетами.

 

Рассмотрим подробнее пси-функцию.

y - пси-функция физического смысла не имеет
1/м3 для 3-х-мерного случая плотность вероятности (квадрат модуля пси-функции) – по смыслу – это вероятность того, что частица находится в единичном объеме в данном месте пространства Р – вероятность.
1/м для одномерного случая --²--…. вероятность того, что частица находится на единичном отрезке…
вероятность того, что частица находится в элементарном объеме dV
вероятность того, что частица находится в конечном объеме V
вероятность того, что частица находится во всем пространстве
     

 

Уравнение Шрёдингера (a) решается точно только для упрощенных, нереальных случаев, например, электрон в одномерной потенциальной яме. Из реальных объектов уравнение можно решить точно только для атома водорода при использовании сферических координат и для иона в эллиптических координатах. Во всех остальных случаях для решения применяются приближенные методы.

 

ПРИМЕНЕНИЕ УРАВНЕНИЯ ШРЁДИНГЕРА

Гармонический осциллятор.

В классической физике гармоническим осциллятором называют частицу, совершающую движения по закону синуса или косинуса. Потенциальная энергия такой частицы U = кх2/2, частота колебаний . Посмотрим, к каким результатам приведет решение уравнения Шрёдингера (a), если его применить к одномерной частице, которая обладает такой потенциальной энергией.

уравнение Шрёдингера для гармонического осциллятора Т.к. случай одномерный, оператор Лапласа D y = d2y / dx2, потенциальная энергия U = кх2/2.

Мы не приводим решение этого уравнения, т.к. оно выходит далеко за рамки курса. [xv] Из решения следует, что полная энергия Е такого осциллятора квантуется:

 

Полная энергия квантового осциллятора n = 0, 1, 2,…,¥
при n = 0 Эта величина называется нулевой энергией осциллятора.

По классическим представлениям при Т ® 0 К энергия должна стремиться к 0, решение уравнения Шрёдингера приводит к выводу о существовании нулевой энергии;

даже при абсолютном нуле (Т = 0 К) частица имеет энергию ¹ 0.

На рис. показаны плотности вероятности при различных энергиях Е осциллятора. Если мы спросим себя, а как ведет себя частица, ведь нам всегда хочется наглядно представить процессы. Ответ – не знаем, ведь квантовый объект имеет двойственную природу. Мы можем только сказать, что частица находится в потенциальной яме, имеет определенный набор энергий и, если ее энергия равна, например Е1, то вероятность обнаружить ее в середине ямы равна нулю. При переходе на другой уровень энергия частицы меняется дискретно, и система поглощает или испускает порцию энергии hn.

 

Существование нулевой энергии следует также из соотношения неопределенности. Действительно.

 

соотношение неопределенностей
D х» А неопределенность в координате примем равной амплитуде А колебаний
D р» р = mv = mw А неопределенность в импульсе примем равной самому импульсу; максимальная скорость колебаний v = w А
Е - максимальная энергия гармонических колебаний (Е =кх2 /2, )
     

Таким образом, из соотношения неопределенностей следует, что энергия осциллятора равна .

 

Частица в одномерной потенциальной яме (ящике)

Рассмотрим частицу с массой m, находящуюся в потенциальной яме, например, электрон в металле. Чтобы иметь возможность решить уравнение Шрёдингера введем следующие упрощения.

1).Частица находится в прямоугольной потенциальной яме, внутри ямы потенциальная энергия U постоянна, примем ее равной нулю = 0. Высота стенок ямы ® ¥, т.е. частица не может выйти из ямы (см.рис.).

2). Частица может двигаться только по оси х в пределах ширины ямы а, т.е. 0£ х £ а (одномерная задача).

Запишем уравнение Шрёдингера a для частицы в виде:

[ Уравнение Шрёдингера для частицы в прямоугольной потенциальной яме

При решении этого уравнения нам нужно найти пси-функцию y (х) и энергию Е частицы. По форме - это уравнение колебаний. Из математики известно, что решение такого дифференциального уравненияимеет вид: . Для нахождения коэффициентов А и В используем краевое условие , смысл которого в том, что частица не может выйти из ямы.

Отсюда следует: , т.к. sin 0 = 0, а cos 0 = 1 ¹ 0, то В = 0

Таким образом, получаем:

· Решение уравнения ([). Здесь неизвестными пока остаются А и w.

Величину w найдем из второго краевого условия

А ¹ 0, следовательно, sinwa = 0, и значит wa = np, где n - -целые числа. Отсюда получаем w.

 

Вторую неизвестную величину А найдем из условия нормировки.

Смысл этого условия в том, что частица обязательно находится в пределах ширины ямы 0 ¸ а, следовательно, вероятность этого события равна 1.

Выразим плотность вероятности , используя пси-функцию (·), подставим w, и найдем интеграл. Учтем, что из тригонометрии: 2 sin2a = 1- cos2a.

Учитывая, что интеграл равен 1, получим выражение для А:

 

Зная А и w, найдем окончательный вид решения:

Пси-функция для частицы в одномерной прямоугольной яме, физического смысла не имеет.
Плотность вероятности для частицы в одномерной яме - определяет вероятность нахождения частицы на единичном отрезке ямы

Теперь осталось найти выражение для энергии электрона. Для этого нужно найти вторую производную пси-функции и подставить в уравнение [. Получим:

энергия частицы в одномерной потенциальной яме,

На рис. показаны энергетические уровни частицы, пси-функция и плотность вероятности для первых трех квантовых состояний. Площади под кривыми плотности вероятности представляют собой вероятности, т.к. .

Что можно сказать о поведении частицы? В зависимости от того, какова ее энергия, вероятность обнаружить частицу различная. Например, при наименьшей энергии Е1 частица пребывает в основном в середине ямы, а при энергии Е2 вероятность обнаружить частицу в середине ямы равна нулю.

 





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 834 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2356 - | 2224 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.