Под операторной передаточной функцией H (p) понимают отношение L -изображения реакции цепи к L -изображению воздействия, подведенного к цепи, при нулевых начальных условиях задачи. Воздействием на цепь может быть задающее напряжение или задающий ток источника, реакцией – любой ток или напряжение в цепи.
В соответствии с этим возможны следующие виды передаточных функций:
Операторная передаточная функция представляет собой дробную рациональную функцию с вещественными коэффициентами
,
степень числителя которой обычно не превышает степени знаменателя, т. е. m £ n.
L -изображение переходной характеристики, связано с операторной передаточной функцией зависимостью
h (t) £ .
L -изображением импульсной характеристики цепи является операторная передаточная функция, т. е.
g (t) £ H (p).
Комплексная передаточная функция может быть получена из операторной заменой p = j w. При этом модуль комплексной передаточной функции | H (j w)| представляет собой амплитудно-частотную характеристику цепи, а аргумент q(w) – ее фазочастотную характеристику
H (j w) = | H (j w| ej q(w).
3.1. Связь операторной передаточной функции
пассивной цепи 1-го порядка
с ее временными характеристиками
[1, c. 243–246, 260–261, 266–267; 2, c. 196–204]
Рис. 3.1 |
3.1.0. Найдите операторную передаточную функцию цепи, схема которой приведена на рис. 3.1, и соответствующие переходную h (t) и импульсную g (t) характеристики, если L = 4 мГн, R 1 = R 2 = 1 кОм. Постройте примерный график переходной характеристики h (t).
В задачах 3.1.1–3.1.25 найдите операторную передаточную функцию H (p), вид которой определяется указанными в схеме цепи реакцией u 2(t) либо i 2(t) и воздействием u 0(t) либо i 0(t). Найдите для полученной H (p) соответствующие переходную h (t) и импульсную g (t) характеристики цепи. Постройте примерный график переходной характеристики h (t).
Таблица 3.1
Вариант | Схема цепи | Вариант | Схема цепи |
3.1.1 | C = 0,2 мкФ; R 1 = R 2 = 4 кОм | 3.1.2 | L = 0,3 мГн; R 1 = R 2 = R 3 = 1 кОм |
3.1.3 | C = 0,05 мкФ; R 1 = R 2 = 1 кОм | 3.1.4 | L = 4 мГн; R 1 = R 2 = 2 кОм |
Продолжение табл. 3.1
Вариант | Схема цепи | Вариант | Схема цепи |
3.1.5 | C = 0,1 мкФ; R 1 = R 2 = 5 кОм; R 3 = 10 кОм | 3.1.6 | L = 2 мГн; R 1 = R 3 = 2 кОм; R 2 = 4 кОм |
3.1.7 | C = 0,02 мкФ; R 1 = R 2 = 5 кОм | 3.1.8 | L = 2 мГн; R 1 = R 2 = 4 кОм |
3.1.9 | C = 2 нФ; R 1 = R 2 = 10 кОм; R 3 = 20 кОм | 3.1.10 | L = 1,5 мГн; R 1 = R 2 = R 3 = 1 кОм |
3.1.11 | C = 0,05 мкФ; R 1 = R 3 = 2 кОм; R 2 = 1 кОм | 3.1.12 | L = 2 мГн; R 1 = R 2 = 1 кОм; R 3 = 2 кОм |
Продолжение табл. 3.1
Вариант | Схема цепи | Вариант | Схема цепи |
3.1.13 | C = 0,25 мкФ; R 1 = R 3 = 1 кОм; R 2 = 0,5 кОм | 3.1.14 | L = 8 мГн; R 1 = R 2 = 1 кОм |
3.1.15 | C = 2000 пФ; R 1 = R 2 = 2 кОм | 3.1.16 | L = 6 мГн; R 1 = R 2 = R 3 = 2 кОм |
3.1.17 | C = 1000 пФ; R 1 = R 2 = 10 кОм | 3.1.18 | L = 10 мГн; R 1 = R 2 = 5 кОм; R 3 = 2,5 кОм |
3.1.19 | C = 0,125 мкФ; R 1 = R 3 = 2 кОм; R 2 = 4 кОм | 3.1.20 | L = 4 мГн; R 1 = R 2 = 500 Ом; R 3 = 1 кОм |
Окончание табл. 3.1
Вариант | Схема цепи | Вариант | Схема цепи |
3.1.21 | C = 0,125 мкФ; R 1 = R 2 = 4 кОм | 3.1.22 | L = 6 мГн; R 1 = R 2 = 3 кОм |
3.1.23 | C = 2000 пФ; R 1 = R 2 = 2 кОм | 3.1.24 | L = 8 мГн; R 1 = R 2 = 4 кОм |
3.1.25 | C = 2500 пФ; R 1 = R 3 = 4 кОм; R 2 = 2 кОм |
3.2. Анализ нестационарных колебаний
в цепи с использованием переходной характеристики
[1, c. 267–273; 2, c. 204–206]
Рис. 3.2 |
В задачах 3.2.0–3.2.25 найдите реакцию цепи, заданной в задачах 3.1.0–3.1.25, на видеоимпульс напряжения или тока прямоугольной формы. В зависимости от вида воздействия в цепи выберите соответствующий вид импульса: для источника напряжения – рис. 3.2, а, для источника тока – рис. 3.2, б. Постройте примерный график реакции, полагая t и = 2t.
3.3. Связь между временными и частотными характеристиками
активной RC -цепи 2-го порядка
[1, c. 234–236, 245–248, 302–305; 2, c. 229–232]
3.1.0. Найдите операторную передаточную функцию ARC- цепи, схема которой приведена на рис. 3.3, и соответствующую ей переходную характеристику h (t), если
Рис. 3.3 |
R = 100 кОм, C 1 = 1,75 нФ, C 2 = 1 нФ. Найдите комплексную передаточную функцию H (j w) и соответствующие АЧХ и ФЧХ цепи. Постройте примерные графики h (t) и АЧХ цепи и оцените связь между ними. Убедитесь в устойчивости цепи по критерию Найквиста.
В задачах 3.3.1–3.3.25
1. Найдите операторную передаточную функцию ARC- цепи 2-го порядка.
1.1. Нарисуйте операторную схему замещения цепи, заменив условное изображение операционного усилителя (ОУ) его схемой замещения в виде ИНУН из табл. 3.2. Коэффициент усиления может быть либо сколь угодно большим (m ® ¥), либо конечным положительным или отрицательным числом K.
1.2. Составьте для операторной схемы замещения систему узловых уравнений для L -изображений колебаний и, решив ее, найдите H (p).
2. Найдите по операторной передаточной функции H (p) переходную характеристику h (t), комплексную передаточную функцию H (j w) и соответствующие амплитудно-частотную ½ H (j w)½ и фазочастотную Q(w) характеристики цепи.
3. Постройте примерные графики h (t) и АЧХ цепи и оцените связь между ними, проверив выполнение соотношений между граничными значениями переходной характеристики цепи (при t = 0 и t ® ¥) и ее АЧХ (при w = 0 и w ® ¥):
.
Таблица 3.2
Наименование элемента | Схемное изображение по ГОСТ | Схемное изображение в стандартных программах для ПК | Схемы замещения |
Дифференциальный операционный усилитель | |||
Инверсный операционный усилитель | |||
Усилитель с конечным усилением | |||
Усилитель с конечным усилением | |||
Усилитель-повторитель напряжения |
4. Постройте на ПК графики h (t) и АЧХ с использованием программ MathCad либо FASTMEAN:
для получения графиков с помощью программы MathCad возьмите функции h (t) и H (p) либо H (j w) c цифровыми коэффициентами;
при использовании FASTMEAN:
4.1. Изобразите на экране дисплея схему заданной цепи, заземлите базисный узел (как показано на схеме) и определите нумерацию узлов, заданную программой.
4.2. Подключите ко входу цепи источник гармонических колебаний, постройте и зарисуйте АЧХ и ФЧХ в линейном масштабе, определите по графику и запишите граничные значения АЧХ:
.
Источник гармонических колебаний отключите.
4.3. Смодулируйте и подключите ко входу цепи источник напряжения в виде единичного ступенчатого воздействия 1(t), постройте и зарисуйте переходную характеристику h (t), определите по графику и запишите величину периода свободных колебаний T св и граничные значения h (t):
.
При построении графиков АЧХ и h (t) выберите начальные и конечные значения переменных w и t такими, чтобы на экране были видны особенности характеристик.
5. Убедитесь в устойчивости ARC -цепи по критерию Найквиста.
5.1. Нарисуйте схему цепи при закороченных входных зажимах (U 1 = 0) и разрыве цепи на входе ОУ и ее операторную схему замещения.
5.2. Найдите операторную передаточную функцию B (p) цепи с разомкнутой петлей ОС (петлевое усиление), составив систему узловых уравнений.
5.3. Запишите комплексное выражение B (j w) = B (p)| p = j w и рассчитайте значение частоты w0, при которой Jm B (j w0) = 0, величину Re B (j w0) и сделайте вывод об устойчивости ARC -цепи.
5.4. Постройте на ПК годограф петлевого усиления B (j w) на комплексной плоскости при изменении частоты 0 £ w £ ¥:
• при использовании программы MathCad возьмите функцию B (p) либо B (j w) с цифровыми коэффициентами;
• при использовании программы FASTMEAN нарисуйте схему с разомкнутой петлей ОС, подключите генератор гармонических колебаний к входному зажиму ОУ и постройте годограф.
6. Для вариантов, цепи которых построены на усилителях с конечным усилением K, рассчитайте значение коэффициента усиления K, при котором цепь будет находиться строго на границе устойчивости, и частоту собственных колебаний при этом.
Таблица 3.3
Вариант | Схема ARC -цепи | Параметры |
3.3.1 | R = 100 кОм С = 2 нФ K = 3,4 | |
3.3.2 | R = 100 кОм С = 1, нФ K = 1,1 | |
3.3.3 | R = 100 кОм С = 1 нФ K = 4,3 |
Продолжение табл. 3.3
Вариант | Схема ARC -цепи | Параметры |
3.3.4 | R = 100 кОм С 1 = 1 нф C 2 = 10 нФ m ® ¥ | |
3.3.5 | R 1 = 5 кОм R 2 = 100 кОм С = 1 нФ m ® ¥ | |
3.3.6 | R = 100 кОм С = 1 нФ K = 34 | |
3.3.7 | R = 100 кОм С = 2,4 нФ K = 3,2 | |
3.3.8 | R = 100 кОм С = 1 нФ K = 2,33 |
Продолжение табл. 3.3
Вариант | Схема ARC -цепи | Параметры |
3.3.9 | R = 100 кОм С = 1 нФ K = 61 | |
3.3.10 | R = 100 кОм С = 1,4 нФ K = 1,2 | |
3.3.11 | R = 100 кОм С = 1 нФ K = 3,1 | |
3.3.12 | R 1 = 25 кОм R 2 = 100 кОм С = 1 нФ m ® ¥ | |
3.3.13 | R = 100 кОм С = 1,4 нФ K = 2,5 |
Продолжение табл. 3.3
Вариант | Схема ARC -цепи | Параметры |
3.3.14 | R 1 = 100 кОм R 2 = 10 кОм С = 1 нФ m ® ¥ | |
3.3.15 | R = 100 кОм С = 1 нФ K = 3 | |
3.3.16 | R = 100 кОм С = 2,8 нФ K = 30 | |
3.3.17 | R = 100 кОм С = 0,5 нФ K = 34 | |
3.3.18 | R = 100 кОм С 1 = 4,5 нФ С 2 = 1 нФ m ® ¥ |
Продолжение табл. 3.3
Вариант | Схема ARC -цепи | Параметры |
3.3.19 | R = 100 кОм С 1 = 10 нФ С 2 = 0,5 нФ m ® ¥ | |
3.3.20 | R = 100 кОм С = 1 нФ K = 3,3 | |
3.3.21 | R 1 = 10 кОм R 2 = 100 кОм С = 1 нФ m ® ¥ | |
3.3.22 | R = 100 кОм С 1 = 3,7 нФ С 2 = 0,5 нФ m ® ¥ | |
3.3.23 | R 1 = 100 кОм R 2 = 10 кОм С = 1 нФ m ® ¥ |
Окончание табл. 3.3
Вариант | Схема ARC -цепи | Параметры |
3.3.24 | R = 100 кОм С = 1 нФ K = 19 | |
3.3.25 | R = 100 кОм С 1 = 0,5 нФ С 2 = 10 нФ m ® ¥ |
3.4. Операторные передаточные функции
пассивных цепей 3-го порядка
[1, c. 243–246; 2, c. 196–199]
Рис. 3.4 |
3.4.0. Найдите операторную передаточную функцию цепи, схема которой представлена на рис. 3.4. Представьте ее в виде
и рассчитайте коэффициенты функции H (p), если L = 1 мГн, C 1 = 0,02 мкФ, С 2 = 0,01 мкФ, R = 5 Ом.
В задачах 3.4.1–3.4.25 найдите операторную передаточную функцию H (p), вид которой определяется указанными в схеме цепи реакцией u 2(t) либо i 2(t) и воздействием u 1(t) либо i 1(t). Рассчитайте коэффициенты функции H (p) по заданным параметрам.
Проверьте правильность полученного выражения, используя блок символьного анализа в программе FASTMEAN.
Постройте амплитудно-частотную | H (j w)|, фазочастотную Q(w) и переходную h (t) характеристики цепи на ПК, используя одну из программ: MathCad либо FASTMEAN.
Для получения характеристик при помощи программы MathCad возьмите функцию H (p) либо H (j w) с цифровыми коэффициентами.
Для получения характеристик при помощи программы FASTMEAN выполните рекомендации п. 4 задачи 3.3.
По графикам АЧХ и h (t) оцените связь между ними, проверив выполнение соотношений между их граничными значениями.
Таблица 3.4
Вариант | Схема RLC -цепи | Вариант | Схема RLC -цепи |
3.4.1 | L 1 = L 2 = 1 мкГн; C = 10 нФ; R = 10 Ом | 3.4.2 | L 1 = L 2 = 1 мкГн; C = 10 нФ; R = 10 Ом |
3.4.3 | C 1 = С 2 = 10 нФ; L = 10 мкГн; R = 10 Ом | 3.4.4 | C 1 = С 2 = 20 нФ; L = 2 мкГн; R = 10 Ом |
3.4.5 | C 1 = С 2 = 0,125 мкФ; L = 4 мкГн; R = 5 Ом | 3.4.6 | L 1 = L 2 = 1 мкГн; C = 0,5 мкФ; R = 4 Ом |
3.4.7 | L 1 = L 2 = 0,4 мкГн; C = 0,2 мкФ; R = 1 Ом | 3.4.8 | C 1 = С 2 = 66,6 нФ; L = 15 мкГн; R = 12,5 Ом |
Продолжение табл. 3.4
Вариант | Схема RLC -цепи | Вариант | Схема RLC -цепи | ||
3.4.9 | L 1 = L 2 = 0,2 мкГн; C = 0,1 мкФ; R = 0,5 Ом | 3.4.10 | L 1 = L 2 = 5 мкГн; C = 0,2 мкФ; R = 4 Ом | ||
3.4.11 | L 1 = L 2 = 2 мкГн; C = 1 мкФ; R = 1 Ом | 3.4.12 | L 1 = L 2 = 8 мкГн; C = 0,5 мкФ; R = 2 Ом | ||
3.4.13 | L 1 = L 2 = 0,5 мкГн; C = 5 нФ; R = 5 Ом | 3.4.14 | C 1 = С 2 = 50 нФ; L = 20 мкГн; R = 10 Ом | ||
3.4.15 | C 1 = С 2 = 10 нФ; L = 10 мкГн; R = 10 Ом | 3.4.16 | C 1 = С 2 = 0,25 мкФ; L = 2 мкГн; R = 5 Ом | ||
3.4.17 | L 1 = L 2 = 2 мкГн; C = 0,25 мкФ; R = 5 Ом | 3.4.18 | C 1 = С 2 = 0,5 мкФ; L = 4 мкГн; R = 10 Ом | ||
Окончание табл. 3.4
Вариант | Схема RLC -цепи | Вариант | Схема RLC -цепи | ||
3.4.19 | C 1 = С 2 = 50 нФ; L = 20 мкГн; R = 20 Ом | 3.4.20 | L 1 = L 2 = 0,2 мкГн; C = 0,1 мкФ; R = 0,5 Ом | ||
3.4.21 | L 1 = L 2 = 8 мкГн; C = 0,25 мкФ; R = 2 Ом | 3.4.22 | C 1 = С 2 = 0,25 мкФ; L = 2 мкГн; R = 1 Ом | ||
3.4.23 | L 1 = L 2 = 10 мкГн; C = 10 нФ; R = 8 Ом | 3.4.24 | C 1 = С 2 = 10 нФ; L = 1 мкГн; R = 10 Ом | ||
3.4.25 | L 1 = L 2 = 2 мкГн; C = 10 нФ; R = 5 Ом | ||||
Контрольные вопросы
1. Что называют операторной передаточной функцией цепи?
2. Какие цепи называют устойчивыми? Каковы основные свойства их передаточных функций?
3. Какова связь между операторной и комплексной передаточными функциями?
4. Что называется АЧХ и ФЧХ цепи? Как они связаны с комплексной передаточной функцией?
5. Что называют единичным импульсным воздействием?
6. Что называется импульсной характеристикой цепи?
7. В свободном или вынужденном режиме протекает переходный процесс в цепи при воздействии на нее единичного импульса?
8. Выполняются ли в цепи законы коммутации при импульсном воздействии?
9. Что называют единичной ступенчатой функцией?
10. Что называется переходной характеристикой цепи?
11. Какими соотношениями связана операторная передаточная функция с временными характеристиками цепи?
12. Какими соотношениями связаны временные характеристики между собой?
13. Какими соотношениями связаны граничные значения временных и частотных характеристик?
14. Какие цепи называют цепями с обратной связью?
15. Что называют петлевым усилением?
16. Что понимают под критерием устойчивости Найквиста?
17. Как убедиться в устойчивости цепи по критерию Найквиста?