Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Особенности энергетического и углеводного обмена в тканях центральной нервной системы




В нервной ткани, составляющей только 2% от массы тела человека, потребляется 20% кислорода, поступающего в организм. При этом энергетические возможности нервной ткани ограничены.

1. Основной путь получения энергии - только аэробный распад глюкозы по ГБФ-пути. Глюкоза является почти единственным энергетическим субстратом, поступающим в нервную ткань, который может быть использован ее клетками для образования АТФ.

2. Проникновение глюкозы в ткань мозга не зависит от действия инсулина, который не проникает через гематоэнцефалический барьер. Влияние инсулина проявляется лишь в периферических нервах.

3. Постоянный и непрерывный притокглюкозы и кислорода из кровеносного русла является необходимым условием энергетического обеспечения нервных клеток. Жесткая зависимость от поступления глюкозы обусловлена тем, что содержание гликогена в нервной ткани ничтожно (0.1% от массы мозга) и не может обеспечить мозг энергией даже на короткое время. С другой стороны, окисления неуглеводных субстратов с целью получения энергии не происходит. Поэтому при гипогликемии и/или даже кратковременной гипоксии в нервной ткани образуется мало АТФ. Следствием этого являются быстрое наступление коматозного состояния и необратимых изменений в ткани мозга.

4. Высокая скорость потребления глюкозы нервными клетками обеспечивается, в первую очередь, работой высокоактивной гексокиназы мозга. В отличие от других тканей, здесь гексокиназа не является ключевым ферментом всех путей метаболизма глюкозы. Гексокиназамохга отличается низким значением Км и высокой Vmax, обладает в 20 раз большей активностью, чем соответствующий изофермент печени и мышц. Ключевыми ферментами ГБФ-пути в нервной ткани являются фосфофруктокиназа и изоцитратдегидрогеназа. Фосфофруктокиназу ингибируют фруктозо-1,6-бисфосфат, АТФ и цитрат, активируют фруктозо-6-фосфат, АДФ, АМФ и неорганический фосфат. Активность изоцитратДГ даже при нормальном уровне утилизации глюкозы в состоянии покоя максимальна. Поэтому при повышенном энергопотреблении нет возможностей ускорения реакций ЦТК.

5. Образование НАДФН2, который используется в нервной ткани в основном для синтеза жирных кислот и стероидов, обеспечивается сравнительно высокой скоростью протекания ГМФ-пути распада глюкозы.

Энергия АТФ в нервной ткани используется неравномерно во времени.

Так же, как и скелетные мышцы, функционирование нервной ткани сопровождается резкими перепадами в потреблении энергии. Резкое повышение энергозатрат происходит при очень быстром переходе от сна к бодрствованию. Поэтому существует еще одна особенность:

6. Образование креатинфосфата. Он обладает способностью удерживать макроэргические связи:

Эта реакция полностью обратима, ее направление зависит от соотношения АТФ/АДФ в клетках нервной ткани. Во время сна накапливается фосфокреатин. Переход к бодрствованию приводит к резкому уменьшению концентрации АТФ - равновесие реакции сдвигается влево, то есть образуется АТФ.

28. Гематоэнцефалический барьер (ГЭБ): анатомические особенности, функция, механизм функционирования. Проницаемость ГЭБ для компонентов плазмы крови в норме и при повреждении.

Гематоэнцефалический барьер (ГЭБ) образован церебральнымиэндотелиоцитами

и глией. ГЭБ обеспечивает гомеостаз центральной нервной системы, которая отделена от

системного кровотока.

Морфология и функция ГЭБ

ГЭБ образован сложной клеточной системой эндотелиоцитов, астроглии,

перицитов, периваскулярных макрофагов и базальной пластинки. Отростки астроцитов

контактируют с эндотелием и погружены в базальную пластинку в месте с перицитами

и периваскулярными макрофагами. Перициты являются сократительными клетками и

окружают церебральные капилляры отростками. Перициты могут влиять на целостность

капилляров и подавлять фагоцитоз эндотелиоциами, ограничивая проницаемость ГЭБ для

некоторых веществ.

Церебральный эндотелий содержит узкие межклеточные плотные структуры,

образуемые пояски типа zonulaoccludens. Межклеточные структуры могут

парацеллюлярно транспортировать гидрофильные вещества через церебральный

эндотелий.

В эндотелии ГЭБ экспрессируется P-гликопротеин (P-glycoprotein, Pgp) и протеины

множественной лекарственной резистентности (multipledrugresistance, multidrug

resistance, MDR). MDR1 и Pgp локализуются на люминальной поверхности церебрального

эндотелия и удаляют в кровь ксенобиотики.

Помимо анатомического барьера, церебральный эндотелий формируют

метаболический барьер посредством моноаминооксидазы A и B, катехол-O-

метилтрансферазы и псевдохолинэстеразы. Эти энзимы осуществляют деградацию

нейромедиаторов.

Дополнительным барьером служит система нейтрализации лекарств

в микрососудах, сосудистого сплетения, лептоменингеальной оболочке и

околожелудочковоморгане (circumventricularorgan). К этой системе относятся

гемопротеины P-450, P-450-зависимые монооксигеназы, НАДH-цитохром

P-450-редуктазы, УДФ-глюкуронозилтрансферазы, щелочные фосфатазы,

глутатионпероксидазы, эпоксидгидролазы, моноаминооксидазы, катехол-O-

метилтрансферазы и псевдохолинэстеразы. Продукты деградации или биотрансформации

удаляются из мозга специфическими транспортными системами ГЭБ или пассивно из

паренхимы в цереброспинальную жидкость.

ГЭБ имеется в 99 % церебральных капиллярах за исключением областей

гематоцереброспинального барьера. К этим областям относятся срединная

возвышенность, гипофиз, паутинное сплетение, сосудистое тело, субфорникальный орган

и терминальная пластинка.

Механизмы транспорта веществ через гематоэнцефалический барьер

Крупные гидрофильные питательные вещества пересекают ГЭБ посредством

селективных транспортеров с затратой энергии.

Диффузия веществ через плазматическую мембрану эндотелиоцитов ГЭБ зависит

от их гидрофобности, молекулярной массы и заряда. Липофильные вещества быстро

диффундируют в нервную ткань.

Специфичный транспортер глюкозы ГЛЮТ-1 переносит галактозу и глюкозу и

асимметрично экспрессируется в люминальной и базальной мембранах церебрального

эндотелия. Идентифицированы транспортеры нейтральных аминокислот (LNAA-система),

основных кислот, пуринов, нуклеозидов, тиамина, монокарбоновых кислот и тироидных

гормонов.

Повреждение гематоэнцефалического барьера

При многих заболеваниях, сопровождающихся нарушением целостности ГЭБ,

развивается периваскулярное воспаление, усиливается продукция провоспалительных

цитокинов и адгезивных молекул в эндотелии, что усиливает привлечение миграции

воспалительных клеток в ЦНС и нарушает транспорт питательных веществ. Это

обусловливает гибель клеток нервной ткани.

 

 





Поделиться с друзьями:


Дата добавления: 2016-03-26; Мы поможем в написании ваших работ!; просмотров: 688 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2487 - | 2330 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.