Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Методология математического моделирования. Системный анализ




3.2.1. Понятие системы

Базовым понятием математического моделирования является понятие системы.

Система в широком смысле – эквивалент понятия математической модели [6] и задается парой множеств ( - множество входов, - множество выходов) и отношением на , формализующем связь (зависимость) между входами и выходами.

Системе присущи следующие атрибуты (свойства):

1. Целостность (единство). Это означает, что система отделена от внешней среды; среда может оказывать на нее действие через входы и воспринимать отклик (реакцию) на эти действия через выходы.

2. Структуированность. Означает, что система разделена внутри на несколько подсистем, связанных и взаимодействующих между собой так же, как целая система взаимодействует с внешней средой.

3. Целенаправленность. Данное свойство требует задания некоторой цели, достижение которой говорит о правильной работе системы.

Под приведенное формальное определение системы подпадают практически все виды математических моделей систем.


Как систему можно трактовать любой преобразователь входных данных в выходные (“черный ящик”) (рисунок 3.1, а).

Системой можно назвать процесс решения задачи. При этом входами будут являться исходные данные, выходами – результаты, а целью - правильное решение (рисунок 3.1, б). Такой подход к системе подчеркивает ее целенаправленность и ведет свое происхождение от исследования операций – научной дисциплины, занимающейся разработкой количественных методов обоснования решений. Основное понятие здесь - операция: действие, которое подвергается исследованию (проектирование, управление, экономическая деятельность и т.д.).

Операция соответствует некоторой системе. Входами этой системы являются элементы принимаемого решения о проводимой операции, выходами - результаты проведения операции (показатели ее эффективности (рисунок 3.1, в)).

Необходимо отметить, что функционирование системы – это процесс, разворачивающийся во времени, т.е. множества возможных входов и выходов - это множества функций времени со значениями соответственно в множествах :

,

где - множество моментов времени, на котором рассматривается система.

Система называется функциональной (определенной), если каждой входной функции соответствует единственная выходная функция .

Иначе система называется неопределенной. Неопределенность обычно возникает из-за неполноты информации о внешних условиях работы системы.

Важным свойством, присущим реальным системам, является причинность. Она означает, что если входные функции и совпадают при , т.е. при , то соответствующие выходные функции удовлетворяют условию , т.е. “настоящее не зависит от будущего при заданном прошлом”.

Числовые величины, связанные с системой, делятся на переменные и параметры.

Параметры – это величины, которые можно считать постоянными на промежутке времени рассмотрения системы. Остальные числовые величины являются переменными.

Значения переменных и параметров определяют количественную информацию о системе. Оставшаяся информация, т.е. качественная, определяет структуру системы. Следует отметить, что различие между параметрами и переменными, а также между параметрами и структурой может быть условным, однако оно полезно в методическом отношении.

3.2.2. Этапы системного анализа и декомпозиция

Системный анализ в широком смысле – это методология постановки и решения задач построения и исследования систем, тесно связанная с математическим моделированием. В более узком смысле системный анализ – это методология формализации сложных задач. Это целенаправленная творческая деятельность человека, на основе которой обеспечивается представление исследуемого объекта в виде системы. Системный анализ характеризуется упорядоченным составом методических приемов исследования.

Существует понятие “системный подход”, под которым подразумеваются традиции его применения с исследованиями, проводимыми многоаспектно, комплексно, с разных сторон изучая предмет или явление. Этот подход предполагает, что все частные задачи, решаемые на уровне подсистем, должны быть увязаны между собой и должны решаться с позиции целого.

А системный анализ – это более конструктивное направление, содержащее методику разделения процессов на этапы и подэтапы, систем - на подсистемы, целей - на подцели и т.д.

 
 

В системном анализе выработана определенная последовательность действий (этапов) при постановке и решении задач, которую называют алгоритмом (методикой) системного анализа (рисунок 3.2).

Эта методика помогает более осмысленно и грамотно ставить и решать прикладные задачи. Если на каком-то этапе возникают затруднения, то необходимо вернуться на один из предыдущих этапов и изменить (модифицировать) его. Если и это не помогает, то это значит, что задача оказалась слишком сложной и ее необходимо разбить на несколько более простых подзадач, т.е. провести декомпозицию. Каждую из полученных подзадач решают по той же методике.

 
 

Результатом этого процесса является структуризация: исходная система приобретает многоуровневую структуру. Соответствующая структура возникает и в множестве подцелей; она называется деревом целей, поскольку представляет собой граф типа дерева (см рисунок 3.3).

Примечание.

Графом называется пара , где - конечное множество вершин, а - бинарное отношение на . Если , тогда и только тогда, когда , то граф называется неориентированным, иначе – ориентированным. Пары называются дугами (ребрами), а элементы множества - вершинами графа.

Теория графов является естественным математическим аппаратом описания сложных систем, поскольку каждой сложной системе ставится в соответствие граф (структурный), вершинами которого являются подсистемы, а дугами – имеющиеся между ними связи. Если связи направленные (т.е. наличие связи означает, что воздействие на не вызывает обратного воздействия или им можно пренебречь), то граф системы является ориентированным (направленным). К этому классу относятся, например, структурные схемы (графы-схемы) систем автоматического управления. У других систем влияние связанных подсистем обоюдно, и они описываются неориентированными графами (например, сложные электрические и электронные схемы).

3.2.3. Экспертные оценки

На начальных этапах алгоритмизации решаемой задачи исследователю, как правило, приходится иметь дело с неточной, неполной и субъективной информацией. Поэтому важно уметь пользоваться существующими методами ее сбора, согласования и обработки. Наиболее развитыми из подобных методов на сегодня являются методы экспертных оценок.

Экспертные оценки включают в себя специально разработанные приемы сбора, согласования и математическую обработку сведений, получаемых от экспертов или целенаправленно сформированной группы экспертов.

Использование таких оценок является одним из наиболее простых, доступных и достаточно надежных способов получения и дальнейшего использования априорной информации. Результаты, полученные с привлечением методов экспертных оценок, оказываются весьма полезными на различных стадиях разработки эскизного проекта и технического задания.

Экспертные оценки следует трактовать шире, чем просто сбор и усреднение произвольно собранных точек зрения, что действительно является некорректным. Результаты экспертизы следует рассматривать как способ получения дополнительной информации, позволяющей уменьшить неопределенность в решении задач.

Существует большое количество методов сбора и последующей обработки субъективной информации, которой располагают опытные специалисты, выбранные в качестве экспертов. Классификация методов получения экспертных оценок показана на рисунке 3.4.


Из анализа представленных на рисунке 3.4 методов достаточно ясно следует, что использование любого из них имеет свои преимущества и недостатки. И использование того или метода зависит от того, чем располагает исследователь при решении поставленной задачи.





Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 903 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2281 - | 2079 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.