Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Дифференциал функции. Определение и свойства




Дифференциалом функции у=ƒ(х) в точке х называется главная часть ее приращения, равная произведению производной функции на приращение аргумента, и обозначается dу (или dƒ(х)): dy=ƒ'(х)•∆х.

 

Основные дифференциалы:

Дифференциал функции обладает свойствами, аналогичными свойствам производной.

  1. Дифференциал постоянной равен нулю:
    dc = 0, с = const.
  2. Дифференциал суммы дифференцируемых функций равен сумме дифференциалов слагаемых:

d(u+v)=du + dv

Следствие. Если две дифференцируемые функции отличаются постоянным слагаемым, то их дифференциалы равны

d(u+c) = du (c= const).

  1. Дифференциал произведения двух дифференцируемых функций равен произведению первой функции на дифференциал второй плюс произведение второй на дифференциал первой:

d(uv) = udv + vdu.

Следствие. Постоянный множитель можно выносить за знак дифференциала

d(cu) = cdu (с = const).

  1. Дифференциал частного u/v двух дифференцируемых функций и = и(х) и v = v(x) определяется формулой

  1. Свойство независимости вида дифференциала от выбора независимой переменной (инвариантность формы дифференциала): дифференциал функции равен произведению производной на дифференциал аргумента независимого от того, является ли этот аргумент независимой переменной или функцией другой независимой переменной.

Производные и дифференциалы высших порядков.

Пусть производная некоторой функции f дифференцируема. Тогда производная от производной этой функции называется второй производной функции f и обозначается f". Таким образом,

f" (x) = (f' (x)) '.

Если дифференцируема (n - 1)-я производная функции f, то ее n -й производной называется производная от (n - 1)-й производной функции f и обозначается f(n). Итак,

f(n) (x) = (f(n-1) (x)) ', n ϵ N, f(0) (x) = f (x).

Число n называется порядком производной.

Дифференциалом n -го порядка функции f называется дифференциал от дифференциала (n - 1)-го порядка этой же функции. Таким образом,

dnf (x) = d (dn -1 f (x)), d 0 f (x) = f (x), n ϵ N.

Если x - независимая переменная, то

dx = const и d 2 x = d 3 x =... = dnx = 0.

В этом случае справедлива формула

dnf (x) = f (n)(x)(dx) n.

Производные n -го порядка от основных элементарных функций

Справедливы формулы

Применение производных к исследованию функций.

Основные теоремы дифференцирования функций:

Теорема Ролля

Пусть функция f: [ a, b ] → R непрерывна на сегменте [ a, b ], и имеет конечную или бесконечную производную внутри этого сегмента. Пусть, кроме того, f (a) = f (b). Тогда внутри сегмента [ a, b ] найдется точка ξ такая, что f' (ξ) = 0.

 

Теорема Лагранжа

Если функция f: [ a, b ] → R непрерывна на сегменте [ a, b ] и имеет конечную или бесконечную производную во внутренних точках этого сегмента, то такое, что f (b) - f (a) = f' (ξ)(b - a).

 

Теорема Коши

Если каждая из функций f и g непрерывна на [ a, b ] и имеет конечную или бесконечную производную на ] a, b [ и если, кроме того, производная g' (x) ≠ 0 на ] a, b [, то такое, что справедлива формула

Если дополнительно потребовать, чтобы g (a) ≠ g (b), то условие g' (x) ≠ 0 можно заменить менее жестким:





Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 8458 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2488 - | 2299 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.