Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тригонометрические функции, их свойства и графики




Все тригонометрические функции (синус, косинус, тангенс и котангенс) относятся к основным элементарным функциям. Сейчас мы рассмотрим их графики и перечислим свойства.

Тригонометрическим функциям присуще понятие периодичности (повторяемости значений функции при различных значениях аргумента, отличных друг от друга на величину периода , где Т - период), поэтому, в список свойств тригонометрических функций добавлен пункт «наименьший положительный период». Также для каждой тригонометрической функции мы укажем значения аргумента, при которых соответствующая функция обращается в ноль.

Теперь разберемся со всеми тригонометрическими функциями по-порядку.

Функция синус y = sin(x).

Изобразим график функции синус, его называют "синусоида".

Свойства функции синус y = sinx.

· Областью определения функции синус является все множество действительных чисел, то есть, функция y = sinx определена при .

· Наименьший положительный период функции синуса равен двум пи: .

· Функция обращается в ноль при , где , Z – множество целых чисел.

· Функция синус принимает значения из интервала от минус единицы до единицы включительно, то есть, ее область значений есть .

· Функция синус - нечетная, так как .

· Функция убывает при ,

возрастает при .

· Функция синус имеет локальные максимумы в точках ,
локальные минимумы в точках .

· Функция y = sinx вогнутая при ,
выпуклая при .

· Координаты точек перегиба .

· Асимптот нет.

Функция косинус y = cos(x).

График функции косинус (его называют "косинусоида") имеет вид:

Свойства функции косинус y = cosx.

· Область определения функции косинус: .

· Наименьший положительный период функции y = cosx равен двум пи: .

· Функция обращается в ноль при , где , Z – множество целых чисел.

· Область значений функции косинус представляет интервал от минус единицы до единицы включительно: .

· Функция косинус - четная, так как .

· Функция убывает при ,
возрастает при .

· Функция y = cosx имеет локальные максимумы в точках ,
локальные минимумы в точках .

· Функция вогнутая при ,
выпуклая при .

· Координаты точек перегиба .

· Асимптот нет.

Функция тангенс y = tg(x).

График функции тангенс (его называют "тангенсоида") имеет вид:

Свойства функции тангенс y = tgx.

· Область определения функции тангенс: , где , Z – множество целых чисел.
Поведение функции y = tgx на границе области определения
Следовательно, прямые , где , являются вертикальными асимптотами.

· Наименьший положительный период функции тангенс .

· Функция обращается в ноль при , где , Z – множество целых чисел.

· Область значений функции y = tgx: .

· Функция тангенс - нечетная, так как .

· Функция возрастает при .

· Функция вогнутая при ,

выпуклая при .

· Координаты точек перегиба .

· Наклонных и горизонтальных асимптот нет.

Функция котангенс y = ctg(x).

Изобразим график функции котангенс (его называют "котангенсоида"):

Свойства функции котангенс y = ctgx.

· Область определения функции котангенс: , где , Z – множество целых чисел.
Поведение на границе области определения
Следовательно, прямые , где являются вертикальными асимптотами.

· Наименьший положительный период функции y = ctgx равен пи: .

· Функция обращается в ноль при , где , Z – множество целых чисел.

· Область значений функции котангенс: .

· Функция нечетная, так как .

· Функция y = ctgx убывает при .

· Функция котангенс вогнутая при ,
выпуклая при .

· Координаты точек перегиба .

· Наклонных и горизонтальных асимптот нет.





Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 1355 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2187 - | 2073 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.