Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Нормальный закон распределения




Определение: Непрерывная случайная величина Х имеет нормальный закон распределения (закон Гаусса), если ее плотность распределения имеет вид:

,

 

где m=M(X), σ2=D(X), σ>0.

 

Кривую нормального закона распределения называют нормальной или гауссовой кривой (рис.7)

Нормальная кривая симметрична относительно прямой х=m, имеет максимум в т. х=а, равный .

 

рис.7

 

Функция распределения случайной величины Х, распределенной по нормальному закону, выражается через функцию Лапласа Ф (х) по формуле:

 

,

 

где - функция Лапласа.

 

Замечание: Функция Ф(х) является нечетной (Ф(-х)=-Ф(х)), кроме того, при х>5 можно считать Ф(х) ≈1/2.

 

График функции распределения F(x) изображен на рис. 8

рис.8

 

Вероятность того, что случайная величина Х примет значения, принадлежащие интервалу (a;b) вычисляются по формуле:

 

 

Вероятность того, что абсолютная величина отклонения меньше положительного числа δ вычисляется по формуле:

 

 

В частности, при m=0 справедливо равенство:

 

«Правило трех сигм»

Если случайная величина Х имеет нормальный закон распределения с параметрами m и σ, то практически достоверно, что ее значение заключены в интервале (a-3σ; a+3σ), т.к.

Задача №3. Случайная величина Х распределена нормально с математическим ожиданием 32 и дисперсией 16. Найти: а)плотность распределения вероятностей f(x); б) вероятность того, что в результате испытания Х примет значение из интервала (28;38).

Решение: По условию m=32, σ2=16, следовательно, σ=4, тогда

а)

 

б) Воспользуемся формулой:

Подставив a=28, b=38, m=32, σ=4, получим

 

По таблице значений функции Ф(х) находим Ф(1,5)=0,4332, Ф(1)=0,3413.

Итак, искомая вероятность:

P(28<X<38)= 0,4332+0,3413=0,7745.

 

Задачи для самостоятельной работы

3.1. Случайная величина Х равномерно распределена в интервале (-3;5). Найдите:

а) плотность распределения f(x);

б)функции распределения F(x);

в)числовые характеристики;

г)вероятность Р(4<х<6).

 

3.2. Случайная величина Х равномерно распределена на отрезке [2;7]. Найдите:

а) плотность распределения f(x);

б)функции распределения F(x);

в)числовые характеристики;

г)вероятность Р(3≤х≤6).

 

3.3. На шоссе установлен автоматический светофор, в котором 2 минуты для транспорта горит зеленый свет, 3 секунды желтый и 30 секунд красный и т.д. Машина проезжает по шоссе в случайный момент времени. Найти вероятность того, что машина проедет мимо светофора, не останавливаясь.

 

3.4. Поезда метрополитена идут регулярно с интервалом 2 минуты. Пассажир выходит на платформу в случайный момент времени. Какова вероятность того, что ждать поезд пассажиру придется больше 50 секунд. Найти математическое ожидание случайной величины Х- время ожидания поезда.

 

3.5. Найти дисперсию и среднее квадратическое отклонение показательного распределения, заданного функцией распределения:

F(x)= 0 при х<0,

1-е-8х при х≥0.

 

3.6. Непрерывная случайная величина Х задана плотностью распределения вероятностей:

 

f(x)= 0 при х<0,

0,7•е-0,7х при х≥0.

 

а) Назовите закон распределения рассматриваемой случайной величины.

б) Найдите функцию распределения F(X) и числовые характеристики случайной величины Х.

 

3.7. Случайная величина Х распределена по показательному закону, заданному плотностью распределения вероятностей:

 

f(x)= 0 при х<0,

0,4 •е-0,4 х при х≥0.

 

Найти вероятность того, что в результате испытания Х примет значение из интервала (2,5;5).

 

3.8. Непрерывная случайная величина Х распределена по показательному закону, заданному функцией распределения:

 
 


F(x)= 0 при х<0,

1-е-0,6х при х≥0

 

Найти вероятность того, что в результате испытания Х примет значение из отрезка [2;5].

 

3.9. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины соответственно равны 8 и 2. Найдите:

а) плотность распределения f(x);

б) вероятность того, что в результате испытания Х примет значение из интервала (10;14).

 

3.10. Случайная величина Х распределена нормально с математическим ожиданием 3,5 и дисперсией 0,04. Найдите:

а) плотность распределения f(x);

б) вероятность того, что в результате испытания Х примет значение из отрезка [3,1;3,7].

 

3.11. Случайная величина Х распределена нормально с M(X)=0 и D(X)=1. Какое из событий: |Х|≤0,6 или |Х|≥0,6 имеет большую вероятность?

 

3.12. Случайная величина Х распределена нормально с M(X)=0 и D(X)=1.Из какого интервала (-0,5;-0,1) или (1;2) при одном испытании она примет значение с большей вероятностью?

 

3.13. Текущая цена за одну акцию может быть смоделирована с помощью нормального закона распределения с M(X)=10ден.ед. и σ (Х)=0,3 ден.ед. Найти:

а) вероятность того, что текущая цена акции будет от 9,8 ден.ед. до 10,4 ден.ед.;

б)с помощью «правила трех сигм» найти границы, в которых будет находится текущая цена акции.

 

3.14. Производится взвешивание вещества без систематических ошибок. Случайные ошибки взвешивания подчинены нормальному закону со средним квадратическим отношением σ=5г. Найти вероятность того, что в четырех независимых опытах ошибка при трех взвешиваниях не произойдет по абсолютной величине 3г.

 

3.15. Случайная величина Х распределена нормально с M(X)=12,6. Вероятность попадания случайной величины в интервал (11,4;13,8) равна 0,6826. Найдите среднее квадратическое отклонение σ.

 

3.16. Случайная величина Х распределена нормально с M(X)=12 и D(X)=36.Найти интервал, в который с вероятностью 0,9973 попадет в результате испытания случайная величина Х.

 

3.17. Деталь, изготовленная автоматом, считается бракованной, если отклонение Х ее контролируемого параметра от номинала превышает по модулю 2 единицы измерения. Предполагается, что случайная величина Х распределена нормально с M(X)=0 и σ(Х)=0,7. Сколько процентов бракованных деталей выдает автомат?

 

3.18. Параметр Х детали распределен нормально с математическим ожиданием 2, равным номиналу, и средним квадратическим отклонением 0,014. Найти вероятность того, что отклонение Х от номинала по модулю не превысит 1% номинала.

 

Ответы

3.1.

0 при х≤-3,

а) f(х)= 1/8 при -3<х<5,

0 при х≥5.

б) 0 при х≤-3,

F(х)= при -3<х≤5,

1 при х>5.

 

в) M(X)=1, D(X)=16/3 σ (Х)= 4/√3

г)1/8.

 

3.2.

0 при х<2,

а) f(х)= 1/5 при 2≤х≤7,

0 при х>7.

 

 

б) 0 при х≤2,

F(х)= при 2<х≤7,

1 при х>7.

 
 

в) M(X)=4,5,D(X) =, σ (Х)=

 

г)3/5.

 

3.3. 40/51.

 

3.4. 7/12, M(X)=1.

 

3.5. D(X) = 1/64, σ (Х)=1/8

 

3.6. F(x)= 0, при х<0,

1-е-0,7х при х≥0.

 

           
     
 
 


M(X)=,D(X) =, σ (Х)=.

 

3.7. Р(2,5<Х<5)=е -1-2≈0,2325

 

3.8. Р(2≤Х≤5)=0,252.

 
 


3.9. а)

 

б) Р(10<Х<14)≈0,1574.

 
 


3.10. а)f(x)=,

 

б) Р(3,1≤Х≤3,7) ≈0,8185.

 

3.11. |x|≥0,6.

 

3.12. (-0,5;-0,1).

 

3.13. а) Р(9,8≤Х≤10,4) ≈0,6562.

 

б)(9,1;10,9)

 

3.14. 0,111.

 

3.15. σ=1,2.

 

3.16. (-6;30).

 

3.17. 0,4%.

 

3.18. 0,8472.





Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 696 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2332 - | 2011 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.