Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Глава 3. Некоторые законы распределения непрерывной




Случайных величин.

 

Равномерный закон распределения

 

Определение: Непрерывная случайная величина Х имеет равномерный закон распределения на некотором интервале (а;b), которому принадлежат все возможные значения Х, если плотность распределения вероятностей f(x) постоянная на этом интервале и равна 0 вне его, т.е.

 

0 при х≤а,

f(х)= при a<х<b,

 

0 при х≥b.

 

 

График функции f(x) изображен на рис. 1

 

(рис. 1) (рис.2)

 

Функция распределения случайной величины Х, распределенной по равномерному закону, задается формулой:

 

0 при х≤а,

F(х)= при a<х≤b,

0 при х>b.

 

Ее график изображен на рис. 2.

 

Числовые характеристики случайной величины равномерно распределенной на интервале (a;b), вычисляются по формулам:

 

M(Х)= , D(X)= , σ(Х)= .

 

Задача№1. Случайная величина Х равномерно распределена на отрезке [3;7]. Найти:

а) плотность распределения вероятностей f(x) и построить ее график;

б) функцию распределения F(x) и построить ее график;

в) M(X),D(X), σ(Х).

 

Решение: Воспользовавшись формулами, рассмотренными выше, при а=3, b=7, находим:

0 при х<3,

а) f(х)= при 3≤х≤7,

0 при х>7

 

Построим ее график (рис.3):

 

рис.3

 

б) 0 при х≤3,

F(х)= при 3<х≤7,

1 при х>7.

 

Построим ее график (рис.4):

 

рис.4

 

в) M(X) = = =5,

D(X) = = = ,

σ (Х) = = = .

 

 

Показательный (экспоненциальный) закон распределения

Определение: Непрерывная случайная величина Х имеет показательный (экспоненциальный) закон распределения с параметромλ>0, если функция плотности распределения вероятностей имеет вид:

 

0 при х<0,

f(х)= λе-λх при х≥0.

 

Функция распределения случайной величины Х, распределенной по показательному закону, задается формулой:

0 при х≤3,

F(х)= 1-e-λх при х≥0.

 

Кривая распределения f (х) и график функции распределения F(х) случайной величины Х приведены на рис.5 и рис.6.

рис.5 рис.6

 

Математическое ожидание, дисперсия и среднее квадратическое отклонение показательного распределения соответственно равны:

 

M(X)= , D(X)= , σ (Х)=

 

Таким образом, математическое ожидание и среднее квадратическое отклонение показательного распределения равны между собой.

 

Вероятность попадания Х в интервал (a;b) вычисляется по формуле:

Р(a<Х<b)= e-λа- e-λb

 

Задача №2. Среднее время безотказной работы прибора равно 100 ч. Полагая, что время безотказной работы прибора имеет показательный закон распределения, найти:

а) плотность распределения вероятностей;

б) функцию распределения;

в) вероятность того, что время безотказной работы прибора превысит 120 ч.

 

Решение: По условию математическое распределение M(X)= =100, откуда λ=1/100=0,01.

 

Следовательно,

0 при х<0,

а) f(х)= 0,01е -0,01х при х≥0.

 

б) F(x)= 0 при х<0,

1- е -0,01х при х≥0.

 

в) Искомую вероятность найдем, используя функцию распределения:

Р(X>120)=1-F(120)=1-(1- е -1,2)= е -1,2≈0,3.

 





Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 520 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2255 - | 2185 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.